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Lesson Plan 7 interprets Gaussian elimination of a matrix An,m as an LR factorization and

extends matrix factorizations to orthogonal elimination matrices Q in the QR factoriza-

tion. It introduces orthogonal matrices Qn,n with orthonormal columns so that QTQ = In
and then specifically studies Householder matrices H = In − 2u uT for unit vectors u.

Householders are applied to solve unsolvable linear equations as best as one can, to find

ONBs of subspaces and to formalize eigenvalue deflation for Krylov vector iterations,

shoring up the intuitive methods for finding matrix eigendata via Krylov from the end of

Lesson Plan 5.
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In this lesson we explore orthogonal unit vectors vi ∈ R
n (or

C
n) that play a special role in Matrix Theory and Computa-

tions.

Matrices Q ∈ Rn,n with mutually orthogonal unit vectors as

columns or rows are called orthogonal matrices. Orthogonal

matrices Qn,n are defined by the equation QT · Q = In where

the transposed matrix QT contains the column entries of Q,

but written row wise.

We study Householder Transformations I− 2u uT as orthogo-

nal elimination matrices and introduce the QR decomposition

of matrices An,m = Qn,n ·Rn,m.

We apply QR factorizations to solve unsolvable linear equa-

tions and to compute orthonormal bases for subspaces.

Numerical codes are built to validate the theoretical results.

An epilogue then closes this matrix based linear algebra course.
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If {ui} are k mutually orthogonal unit vectors in R
n, then for

each i ̸= j the vector dot products uTi · uj = 0 due to the mu-

tual orthogonality and if i = j then uTi · uj = 1 since each ui
is a unit vector.

Let Un,k =







...
...

u1 · · · uk
...

...






be the column vector matrix for

the ui. Then the transposed matrix UT
k,n =







· · · uT1 · · ·
...

· · · uTk · · ·







is the row vector matrix of the ui.

And the matrix product UT

k,n ·Un,k is the identity matrix Ik,

with ones on the diagonal due to the normalized ui and zeros

everywhere else due to their mutual orthogonality.

Clearly k ≤ n here. Why?
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Square orthogonal matrices Qn,n, defined by QTQ = In,

have low computational costs and errors and they are of great

help in modern matrix computations.

Recall the LR factorization of matrices An,m by using a se-

quence of Gaussian elimination matrices Gk.

A row-updated matrix Ã with pivot 1 in position (k, k) asks

for an elimination matrix Gk that zeros out all entries in col-

umn k below position k. This Gk has the simple form below :

Ã =





























1

. . . ∗
1

1 ∗ · · · ∗
... ∗ · · · ∗

0 ãk
...

. . .
...

... ∗ · · · ∗





























, Gk =





























1

. . . 0

1

1
... 1

0 −ãk 0
. . .

... 0 0 1




























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Each Gaussian elimination matrix Gk for k ≤ n− 1 and An,n

is the sum of In plus a rank 1 lower triangular matrix.

We want to repeat this low rank perturbation of I method with

orthogonal matrices Qk to write An,m = Qn,n ·Rn,m where

QT ·Q = In and R is upper triangular.

For a unit vector u ∈ R
n, the matrix

H = In − 2u · uT

is a rank 1 perturbation of In and orthogonal since

HT ·H = (I − 2u uT )T · (I − 2u uT ) = (I − 2u uT )2

= In − 4 u uT + 4 u uT · u uT = In (∗)

and uT · u = 1.
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How do we choose u so that the n−k+1 entries







...

ak
...







n−k+1,k

in column k of the updated partially upper triangular matrix Ãk

are zeroed out by H = I − 2u uT .

Gaussian elimination matrices Gk for column k are the iden-

tity matrix In plus a non-zero fill-in from position k + 1 on

down in column k.

Orthogonal elimination matrices Hk for column k of Ã are

block-diagonal with the identity matrix Ik−1 on top and en-

tries from row and column k on down and to the right in an

orthogonal block Un−k+1,n−k+1, i.e.,

Hk = blkdiag(Ik−1, U)
in Matlab notation.
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The orthogonal elimination block U = In−k+1 − 2v · vT of

Householder type must map v =







...

ak
...







n−k+1

to











±∥v∥

0
...

0











n−k+1

to eliminate the entries in column k of Ã below the Ã’s diago-

nal and carry the length of v on the updated k th diagonal spot.

For any nonzero column vector v ∈ R
ℓ, the column times row

vector product vℓ,1 · v
T

1,ℓ is an ℓ by ℓ dense matrix of rank 1 as

all its rows are multiples of vT and its columns multiples of v.

Such vℓ · v
T
ℓ ℓ by ℓ matrix products are called dyads.

Note that not all rank 1 matrices are dyads.

Find a matrix of rank 1 that cannot be expressed as a dyad.
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We construct dyad defined orthogonal elimination matrices

Qn,n = In − 2v · vT most simply from their eigenstructures.

Lemma 1 : If QTQ = In, then for all x ∈ R
n, ∥Qx∥ = ∥x∥.

Lemma 2 : If QTQ = In, then all eigenvalues λ of Q lie on

the unit circle of the complex plane or |λ| = 1.

Lemma 3 : For any unit column vector x ∈ R
n the matrix

Q = In − α x xT is orthogonal if and only if α = 2 or α = 0.

Proofs :

(1) From the euclidean norm definition

∥Qx∥2 = (Qx)TQx = xT QTQ x = xT (QT Q) x

= xT In x = xT x = ∥x∥2.
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(2) If Qy = λy then ∥Qy∥ = ∥λy∥ = |λ| ∥y∥. From Lemma 1

we know that ∥Qy∥ = ∥y∥. This implies that |λ| = 1.

(3) Use the earlier formula (∗) with 2 replaced by α to obtain

QT ·Q = (In − α x xT )T · (In − α x xT )

= In − 2α x xT + α2 x xT
∗
= In

since x xT · x xT = x xT as xT x = 0. Thus the latter

equal sign ∗ is true exactly when 2α = α2, or if and only if

α = 2 or α = 0. □

What are the eigenvalues and eigenvectors of the orthogonal

matrix Qn,n = In − 2 u uT for any given unit vector u?
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Determinant and polynomial root-finder eigenvalue methods

of old cannot help here at all. Q is a rank 1 perturbation of

the identity map. Q is orthogonal, all its eigenvalues have

absolute value 1. What may the eigenvectors be?

What happens to u when it is mapped by Q?

Q u = (I− 2 u uT)u = u− 2 u uT u = u− 2 u = − u

since uT · u = 1. Clearly u is an eigenvector of Q for the

eigenvalue λ1 = −1.

When u is the defining unit vector for Q, then Q = I − 2uuT

reverses the direction of u. If in the kth elimination we choose

u as the vector from ∥vk∥ek to the kth lower triangular column

vk of A then Q = I−2uuT ’s direction reversal property sends

vk to ∥vk∥ek as desired for lower triangular elimination of A.
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If w ⊥ u then Q w = (I − 2 u uT )w = w − 2u uT w = w.

Note that in n-space the set of vectors that are orthogonal to

one given vector u ̸= o form a subspace of dimension n−1.

Students should be able to outline a proof of this statement.

Hint : {u⊥} = {w | w ⊥ u} = ker(uT )

Consequently all vectors w that are orthogonal to u ̸= o are

eigenvectors of Q = I − 2uuT for the n−1 fold eigenvalue

λ2, ..., λn = 1 since dim(u⊥) = n− 1.
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Here is a ’validation’ of this eigen-based development of or-

thogonal elimination matrices Q when implemented on the

first column a of a random entry 6 by 6 matrix A in Matlab:
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Note that the first row of H · A and Q agree in the leading 15

digits in Matlab output and that the lower diagonal n−1 by n−1
block of Q differs greatly from H · A’s lower diagonal block

when only the first partial QR decomposition was performed.

Applications

[ 1 ] Orthonormal Bases :

Orthonormal bases of a subspace of Rn are very important in

many applications. The QR factorization of any n by m matrix

An,m = Qn,n · Rn,m indicates that the j –th column aj of A is

the matrix times vector product Q × column j of R.

I.e., each column vector aj of A is a linear combination of the

orthonormal columns of Q in positions up to and including j.
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Therefore the span of the column vectors aj of A is identical

to the span of the column vectors qj of Q.

A minimal orthonormal spanning set or an orthonormal basis

of span{a1, ..., am} consists of the column unit vectors qj of

Q that have a nonzero pivot in the upper triangular matrix R

of the QR factorization A = QR.

[ 2 ] Least Squares :

The LR and QR matrix decompositions enable us to solve lin-

ear systems An,mx = b. But linear equations can only be

solved when b lies in the column space of A.

”Least squares” deal with unsolvable linear equations.

If Ax = b cannot be solved because b does not lie in the col-

umn space of A, least squares methods compute the vector x

with minx∈Rm∥Ax− b∥ error.
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Here we only deal with n > m, i.e. with more equations than

unknown in the linear system An,mxm = bn and assume that A

has full rank m.

This situation occurs naturally when there are more experi-

ments than variables xi, the variables are independent and one

wants to find the best solution from long and partially redun-

dant test run data.

If An,m = Qn,n ∗Rn,m is a QR factorization of A and we want

to solve Ax = b as best we can, we start with

QTAx = QTQAx = Rx = QT b

and observe that

minx∈Rm∥Ax− b∥ = minx∈Rm∥Rx−QT b∥

from Lemma 1.
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The upper triangular matrix Rn,m contains a nonsingular m by

m block R1 on top thanks to our full rank assumption and has

only zeros below.

With Rn,m =

(

R1

On−m

)

and QT b =

(

wm

zn−m

)

conformally

partitioned,

∥Ax− b∥ =

∥

∥

∥

∥

(

R1x

0

)

−

(

w

zn−m

)∥

∥

∥

∥

is minimized by the solution x of the nonsingular m by m

linear system R1x = w. And the unavoidable error is ∥z∥.

When b is not in the column space of A and the system Ax =
b cannot be solved, geometry tells us that the perpendicular

projection of b onto im(A) is the closest point AxLS of im(A)
to b.
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Let us validate this observation: Is the vector joining AxLS and

b orthogonal to every column of A, or is AT (AxLS − b) ≈ on?

The Matlab commands below solve one random entry linear

system with 40 equations and 5 variables :
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The error term for the QR based least squares problem has

entries of magnitudes in the 10−15 or smaller range which in-

dicates proper orthogonality.

In 1822 Carl Friedrich Gauss invented the Normal Equation

method for solving least squares problems.

It exploits the orthogonality of the vector from Ax to b to

the column space of A directly by multiplying an unsolvable

overdetermined linear system Ax = b by AT from the left and

gives us the Normal Equation

ATAx = AT b.

This form is attractive. It reduces the problem from an n by m

system to one with a smaller m by m system matrix.

Recall that typically n ≫ m here.
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Here is the output of the Gauss’ Normal Equation approach

for the same 40 by 5 dimensional least squares problem:
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Note that both least squares solution xLS and xN are nearly

identical and the orthogonality of both vectors Ax.. − b to

im(A) is similarly maintained.

However, there is a major problem with using Gauss’ normal

equation. It involves the matrix product of AT and A and the

fact the matrix condition numbers multiply or worsen for ma-

trix products much of the time, due to Olga Taussky (1950).

In our example data set, the condition number of A is rela-

tively benign at around 1.5. But note that the matrix product

AT · A has a condition number of 2.37 ≈ 1.52.

This becomes rather dishabilitating for system matrices A with

condition numbers around 100, 1000, or larger. Then the nor-

mal equation’s solution is likely quite inaccurate and Gauss’

theoretically correct normal equation approach is not advised

for computations.
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[ 3 ] Deflation Techniques for Krylov Vector
Iterations and Eigen Computations :

Here we start from the basis change equation

AU = U−1AEU (1)

and the matrix eigenvalue equation

AExE = λxE (2)

of Lesson Plan 4.

Multiplying equation (1) on the right hand side by U−1 we get

AUU
−1 = U−1AE

and thus

AUU
−1xE = U−1AExE = U−1λxE = λU−1xE

from equation (2).

Therefore AU has the same eigenvalue λ as AE and the corre-

sponding eigenvector in U coordinates is U−1xE .
20



Next assume that Krylov vector iteration for a square matrix

An,n has found the eigenvector x and eigenvalue λ for A.

For Householder matrices H = In − 2uuT with ||u|| = 1
we have the following Lemma that students should be able to

prove.

Lemma 4 : H = H−1 = HT .

Given An,n we assume that normalized Krylov vector iteration

for A from a randomly chosen nonzero n-vector b has found a

unit eigenvector x of A.

We want to deflate the eigendata problem for An,n to one of

smaller dimensions n−1 by n−1.

To do so we will construct a Householder similarity HAH−1

on A with H = I − 2uuT for a still unknown unit vector

u ∈ R
n.
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Using Lemma 4 we now block upper triangularize A into the

1 by 1 block λ and A2n−1,n−1

HAH−1 = HAH =











λ · · · ∗ · · ·
...

0 A2

...











. (∗∗)

Clearly HAHe1 = λe1 and after multiplying equation (∗∗) on

the left by H we obtain

AHe1 = λHe1 (∗ ∗ ∗)

since H · H = In by Lemma 4. Thus He1 is an eigenvector

of A for the eigenvalue λ. From Lemma 1, ||He1|| = ||e1|| =
1 = ||x|| and hence He1 = ± x and the subspaces spanned by

He1 and x are identical. Therefore we can ignore the ± sign.
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Formally we need to find a unit vector u and set H = In−2uuT

so that He1 = x for the Krylov computed unit eigenvector

of A. By Lemma 5 we know that H · H = In and thus

Hx = e1. Thus the desired H works exactly as in the elim-

ination method, sending the dense eigenvector x to the first

standard unit vector e1.

Efficient Matrix Coding :

Matrix splittings and factorizations are great tools to create

fast matrix algorithms. Look at equation (∗∗) that shows an

explicit upper triangular block decomposition of a matrix A.

How should we best compute HAH to verify that the eigen-

value λ can be found in the (1, 1) position of HAH for the

properly set up Householder transform H = In − 2uuT? How

can we compute this double matrix product more efficiently?
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The math theoretical way would be to explicitly write

HAH=H(AH)=(In−2(un,1·u
T
1,n))·(An,n·(In−2(un,1·u

T
1,n))).

I.e., form the Householder matrix H and multiply two n by n

matrices as indicated at 2 O(n3) +O(n2) operations cost.

However, when using the splitting of H = In − uuT , then

HAH can be evaluated at 7 O(n2) cost:

HAH = HA(I − 2uuT ) = H(A− 2AuuT )

= (I − 2uuT )(A− 2AuuT )

= A− 2AuuT − 2uuT (A− 2AuuT )

= A− 2AuuT − 2uuTA+ 4uuTAuuT =

= An,n − 2((Au)n,1u
T
1,n)n,n − 2(un,1(u

T
1,nAn,n)1,n)n,n

+ 4(uT1,n(Au)n,1)1,1(un,1u
T
1,n)n,n.

Note that the 2nd though 4th terms of HAH above require

only 2 O(n2) operations for each column times row evaluation.
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Epilogue

Seven Lesson plans, with more subject matter than can be rea-

sonably covered in an introductory one semester Linear Alge-

bra course where two semesters are really needed !

This Modern Matrix Theory course now ends with some per-

sonal and historic memories and observations.

Episode A:

Many decades ago as a graduate student at Caltech I studied

with Olga Taussky. Occasionally she directed a Seminar on

current results and developments where she gave lectures and

the students were to talk on selected topics.

One year I was asked to talk about Householder Transforms.

Alston had published the first paper on them in 1958 and they

were the subject of the very last section 7.8 in his 1964 book

on ’The Theory of Matrices in Numerical Analysis’.
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Working through their algebraic development and equations

of the time I felt a void of understanding what Householder

Transforms did and how they worked. On Friday, Olga asked

how my talk was coming along and I told her of my lack of

deep understandings. She told me that Alston would visit Cal-

Tech the next week and he might be attending my seminar talk.

Over the weekend I restudied and restudied all that I could find

out and I conferred with fellow graduate students. We never

reached any deep understanding of the why for Householder

transformations’ success.

In my lecture on Tuesday, I started off with their definition and

endless formulas. (see Wikipedia on ’Householder Transfor-

mation’, e.g.) Then I left a large part of the blackboard empty

and continued - after the blank blackboard gap - with what

they did and how they helped in numerical matrix algorithms.
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That much was quickly done, except for the big gap on the

board on which I then mused and asked for help for the rest of

the hour. Alston knew of no immediate help, but he acknowl-

edged the issue. Olga smiled benevolently, but my fellow stu-

dents were at unease - for an embarrassment that they felt.

Olga and Alston, however, indicated afterwards that mine was

a cherished approach in mathematical research, finding and

searching to fill gaps of knowledge.

This problem has laid fallow ever since. Until right now, where

Householder Transforms have been explained through sub-

space geometry and matrix eigenanalysis without any need for

cumbersome elementary vector algebra or equations.

I am happy to have carried this problem with me for decades

and now have had the luck to put this ’why’ problem to rest.
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My modernizing educational endeavors have born fruit.

I am sure that that this little advance would make Olga and

Alston smile today.

Episode B:

On the cost of teaching obsolete math subjects to students just

as we were taught and as our teachers were taught and their

teachers were taught, .. for centuries, long past.

Decades ago again, I was up for tenure at Auburn University

which was not known for much applied or numerical expertise

among its math faculty.

I gave a Numerical Linear Algebra course – a first there –

that fall and sent my students home for the weekend with the

homework to try and find all eigenvalues and eigenvectors of

the matrix In − 2u uT for a unit column vector u.
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On Monday morning I found myself in deep trouble.

Unbeknownst to me, some offspring of our faculty had reg-

istered for my course and had brought the problem to their

parents, aunts and uncles. So they all recalled determinants,

the characteristic polynomial, polynomial root finding meth-

ods for matrices etc. But none of this was of any use here for

the given n by n matrix with a variable u input to boot.

I quickly realized that my students should approach this home-

work differently, but I did not give any hints as to how; I just

let it simmer around their dinner tables and dorm corridors ...

And when the time came in my course to try orthogonal ma-

trix elimination strategies, the class was much more ready to

approach the I − 2u uT eigen problem from Matrix Theory.
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Faculty dissent and disarray weakened, computational matrix

analysis began and I was tenured.

Student Episodes C ... :

Here are the results of the misinformation in 90+ % of our el-

ementary Linear Algebra courses and textbooks:

(a) Engineering students came up to me at the leading Techni-

cal University (the RWTH) in Germany: They had to solve

a system of linear equations and wanted to do this in For-

tran. So they looked at their linear algebra class notes, found

Cramer’s determinantal rule, and programmed and tested it

for small dimensions n. And all went well at first.

Their specific problem used n = 100 and no output was ever

computed. Why? Determinant evaluation is an O(n!) process;

Gauss uses O(n3) operations. Why was ’Cramer’ taught?

VI



(b) A leading (top 5) Aerospace Departments (U Illinois Cham-

paign-Urbana) in the US recently asked for a prelim to be re-

taken by a graduate student because the student had messed

up the rule of signs, called ’Ruth-Hurwitz’ (1876, 1895) to

determine the stability of a specific 5 by 5 dynamical system.

Ruth-Hurwitz requires characteristic polynomial evaluations.

But luckily no polynomial root finding. The process goes back

to Descartes’ Rule of Signs’ in La Géométrie (1637).

Today one would best load the matrix A into Matlab and use

Matlab’s eig.m to plot A’s eigenvalues in the complex plane.

If all eigenvalues lie in the left half plane, the matrix is stable.

This takes less than 50 seconds to implement and milliseconds

to run. Why do we teach centuries old un-practical stuff?

[The prelim was administered and taken on a laptop after all!]
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(c) What if I had not mentioned the limitations of Gauss’ nor-

mal equation at the end of Lesson Plan 7.

What if I had not known or not experienced them myself?

How could we avoid such blunders as we subject tenure track

faculty increasingly to successfully writing grant applications.

Historically it was once an honor to teach beginning math

courses. Now nobody can take the time to become up-to-date

on the current state of the art in a course’s subject matter.

This is a structural university wide problem, for math and

other areas.

I have no answer Can you help
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