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Lesson Plan 6 defines angles between vectors in n-space, measures them and then uses
the standard matrix representation of rotations to prove the addition formulas for sine and
cosine via matrix theory. Orthogonality of vectors is defined via the vector dot product
and orthogonal matrices are introduced.

This Lesson Plan is widely extended to simulate a live teacher - student interaction.
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Concepts, Notions and Definitions in Lesson Plan 6

Angles 1n Space
Teamwork
Plane
Trigonometry
Unit Vector
Unit Circle

Normalized Vector
[Linear Function

(continued)
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Planar Rotation

Standard Matrix Representation
Trig Addition Formulas

Dot Product Angle Formula

Perpendicular Vectors
Matrix Transpose

Orthogonal Matrix
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What determines angles in space and
how can we measure them in R"?

The concept of angles in space and their measure-
ment offer a chance for deeper conceptual under-
standings of vectors and matrices on a concrete level.
Here my startup questions in class typically are:
What is an angle in R"?

How does it come about?

What geometric objects of R" define an angle?

I then step out, walk the hallways for a minute or
two or four while the students deal with this mental
task.



Students are often best left alone deliberately for a
short interval to discuss, develop and perform this
labor by themselves through teamwork.

Occasionally I enter back in to learn about their
progress, to give pointers or ask further questions
until they are sufficiently clear about . . . . . . ..

Questions naturally lead to group discussions 1n
class. Students will confer and discuss.

My questions may generate practical student reflec-
tions such as:

Take 3 points in n-space, say the origin O, A, and

B, or two lines that intersect at O, or ... .
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Then maybe:

Look at the plane spanned by O, A, and B € R", or
by the two lines through the origin O ... . And :
Make or call origin O the vertex of the angle.

.. Or not .. ... ; each class 1s different.
And ﬁnally

Move, rotate and tilt the plane to make it coincide
with R And then :
Draw the three points out on paper (or the two in-
tersecting lines), and there it is:

the angle between O A and OB (or between the two

lines).



The students can generally construct the equivalence

between a space angle and its planar representation
n RQ. A

@)

To visualize that a general plane in R" 1s like our 2-
D drawing on paper involves will forces and mental
abstraction of a high degree.

This takes students a good amount of time.
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Then we use geometry and trigonometry of R* for
the angle between the rays OA and OB to measure
angles.

A

?7

O
Further questions:

How do we measure planar angles’

Does anyone remember trigonometry ?
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What can trig functions do for us here?

How are the elementary trig functions defined?
Then I draw the standard coordinate axes 1nto
the plot. But to what good ?

After drawing the coordinate axes and labeling the
respective angles, . . . ... then what ?




Trigonometry ? Help ? HELP '
From the drawing students may recognize a possible
role for sine and/or cosine here.

The student reflections may lead to the unit circle

and 1ts intersections + and -+ with the two ravs from
OtoAandto B

Students might not correlate the points marked by +
and -+ on the unit circle to the given points A and 55
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.. or correlate to the rays OA and OB.
I, the teacher, must be patient and wait until . . . . .
until some students note that the two (cos..,sin..)
points marked by + and + represent the normalized
vectors from O to A and from O to 5 of length 1.
Thus as vectors

+ = (cos(a), sin(a)) = HiH A and
+ = (cos(f),sin(B)) = HgH B.

We still need find a measure for the angle o — 3
somehow between the rays OA and OB.



What is cos(a — ) given the coordinates of

~S ~

A = (cos(a),sin(a)), B = (cos(f),sin(B))?

Can anyone recall the ’addition formulas’ for trig
functions?  Were they ever proved?

Who remembers now?

Can Linear Algebra help us solve this geometric
problem?

What can we do with cos(a — 3) = . ... using ma-
trices o measure the angle between OA and OB?
Is there a way, what 1s the way?
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The trigonometric identities can indeed be estab-
lished via linear transformations and their stan-
dard matrix representations :

10



Recall the linearity condition of linear functions f

flau+ bv) = af(u) + bf(v).
Consider two nonzero vectors au and bv € R? with
a,b € R and u,v € R? and the diagonal au + bv of

the parallelogram that they form.

How does a planar rotation Rg around the origin
by 3 change this or any parallelogram ?

The rotated sides and their diagonal form another
parallelogram that 1s congruent to the original one,
and therefore

Rs(au + bv) = Rg(au) + Rs(bv), i.e., Rp is

linear. .



Thus the rotation Rs of R* around the O is a linear
function and has a standard 2 by 2 matrix representation.

e,=(0,1)

(cos(a + B),sin(o +P))

(cos(a), sin(o))

(cos(B ), sin(B))

O

e, =(10)

What is the standard matrix representation for the counter-

clockwise rotation
angle 87?

Rgs of the plane around the origin 0 by the
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The standard matrix representation of a linear transfor-
mation R®> — R? contains the images of the standard unit

vectors e; = < (1) ) and e, = ( (1) > of R? in its columns.

Thus the matrix for the counter-clockwise rotation 7 1s

e[ (d) n(2)
\ e

What are the images of the unit vectors ey, e; of R? under coun-
terclockwise rotation by (3?
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e, = (0,1 ) (cos(a. + B),sin(o +B))

(cos(a), sin(o))

(cos(B), sin(B))

O e, =(10)
(1) - (2] o () -
—sin(8) \. , . : |

( cos(3) >9 Why is | this correct? Explain.

oo Ro= () o)) a2 by 2 marix
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If we now rotate the point (cos(«), sin(«)) by an additional
angle  counterclockwise around the origin, it moves to

(cos(a + B),sin(a + 3)).
How does the 2 by 2 rotation matrix Rz map (cos(a), sin(a))? ?
cos(a + ) 1 cos(ar) \ [ cos(B) —sin(pB) cos(a)
( sin(a + ) ) - Rﬁ( sin (o) >_< sin(8)  cos(B) ) ( sin () )
[ cos(a)cos(8) — sin(a) sin(5) 9
B ( cos(a) sin(f) + sin(a) cos(p) ) < R
By comparing entries :

cos(a + ) = cos(a) cos(f) — sin(a) sin(5) and

sin(a + §) = cos(a) sin(3) + sin(a) cos(pB) .
Thus we have derived both trigonometric addition formulas
(for sine and cosine) in one step by using fundamental con-

cepts from Linear Algebra.
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, however ?

Cosine is an even function cos(—7) = cos(~y) and sine is odd,
i.e., sin(—v) = —sin(y). Thus

cos(£(AOB)) = cos(a — B) = cos(a+ (—p))
= cos(a) cos(—p) — sin(a) sin(—p)
= cos(a) cos(f) + sin(a) sin(f) .
T even fctn 1 odd fctn
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What does the cosine difference formula have to do with our
original angle problem?

The geometric angle 1s determined by the vectors or line seg-
ments OA and OB in R".

How does cos(a — ) relate to the geometry and the coordi-
nates of A, B and O?

Thus far, we know three formulas that relate space angles

and vectors :
(1) cos(£L(AOB)) = cos(a — 8) = cos(a) cos(B) + sin(a) sin(B),

A B

(2) (cos(a),sin(a)) = T and (3) (cos(f),sin(B)) = B .S

What are their relationships? How can we express
cos(a) cos(f) +sin(a) sin(B8) or  cos(a — B)
in terms of the given vectors from O to A and B?
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The right hand side cos(«) cos(f) + sin(«) sin(3) in equa-
tion (1) of the cosine difference formula 1s the dot product of
the two unit vectors (cos(«), sin(a))-(cos(B), sin(3)) derived
from OA and OB. Thus
cos(Z(AOB)) = cos(a — ) = cos(a) cos(8) + sin(a) sin(8) (1)
= (cos(a),sin(a)) - (cos(B),sin(f)) (2), (3)

A B AB
LAl 1Bl HAILBI

This 1s the dot product’ cosine angle formula for R".

The space angle example takes about I or 2 hours of intense
class time and student work.

Student question: When is the angle /(AOB) a right angle,
i.e., when are the rays from O to A and O to B perpendicular?
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Precisely when cos(Z/(AOB)) = 0 or when the dot product
A - B = 0 according to the dot product cosine angle formula.

We can now solve a typical problem of linear algebra: Given
two nonzero vectors x and y 1n n-space, orthogonalize y with
respect to x so that the resulting vector z and x are perpendic-
ular to each other.

To simplify, normalize the vector x # o € R" to become a
unit vector x of length 1 by dividing z by its euclidean length

ornorm ||z|| = /-, ie, T=uz/|z| =2z/> 25 # on.

Next we set 2 = y — (2 - y)Z and verify that £ | z, namely
Toz=T-y—(T-y)T-2)=2-y—2T -y = op.

If we normalize z to become Z with ||Z|| = 1, then both vectors

z and 2 have length 1 and x and y are mutually orthogonal.
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For the n by 2 matrix / o \
U=\ x 2

N

I 0
0 1

note that Ug n o Upo = Iy = ( ) due to the construction

of the vectors z and Z.

Here I, is the 2 by 2 identity matrix and U with 2 rows and n
columns denotes the transpose matrix ot U, o that contains the
columns of U 1n 1ts rows.

Vector set orthogonalizing processes and orthogonal matrices
Un.n with U .U = I, play a central role in Matlab and in
the additional matrix eigenvalue codes for real and complex

square matrices that we shall study in Lesson Plan 7 next.
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