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Lesson Plan 6 defines angles between vectors in n-space, measures them and then uses

the standard matrix representation of rotations to prove the addition formulas for sine and

cosine via matrix theory. Orthogonality of vectors is defined via the vector dot product

and orthogonal matrices are introduced.

This Lesson Plan is widely extended to simulate a live teacher - student interaction.
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What determines angles in space and

how can we measure them in R
n?

The concept of angles in space and their measure-

ment offer a chance for deeper conceptual under-

standings of vectors and matrices on a concrete level.

Here my startup questions in class typically are:

What is an angle in R
n?

How does it come about?

What geometric objects of Rn define an angle?

I then step out, walk the hallways for a minute or

two or four while the students deal with this mental

task.
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Students are often best left alone deliberately for a

short interval to discuss, develop and perform this

labor by themselves through teamwork.

Occasionally I enter back in to learn about their

progress, to give pointers or ask further questions

until they are sufficiently clear about . . . . . . ..

Questions naturally lead to group discussions in

class. Students will confer and discuss.

My questions may generate practical student reflec-

tions such as:

Take 3 points in n-space, say the origin O, A, and

B, or two lines that intersect at O, or ... .
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Then maybe:

Look at the plane spanned by O, A, and B ∈ R
n, or

by the two lines through the origin O ... . And :

Make or call origin O the vertex of the angle.

. . . . ... Or not ... . . . . ... ; each class is different.

And finally :

Move, rotate and tilt the plane to make it coincide

with R
2. And then :

Draw the three points out on paper (or the two in-

tersecting lines), and there it is:

the angle between OA and OB (or between the two

lines).
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The students can generally construct the equivalence

between a space angle and its planar representation

in R
2.

To visualize that a general plane in R
n is like our 2-

D drawing on paper involves will forces and mental

abstraction of a high degree.

This takes students a good amount of time.
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Then we use geometry and trigonometry of R2 for

the angle between the rays OA and OB to measure

angles.

Further questions:

How do we measure planar angles?

Does anyone remember trigonometry?
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What can trig functions do for us here?

How are the elementary trig functions defined?

Then I draw the standard coordinate axes into

the plot. But to what good ?

After drawing the coordinate axes and labeling the

respective angles, . . . ... then what ?
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Trigonometry ? Help ? HELP !

From the drawing students may recognize a possible

role for sine and/or cosine here.

The student reflections may lead to the unit circle

and its intersections + and + with the two rays from

O to A and to B :

Students might not correlate the points marked by +

and + on the unit circle to the given points A and B
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... or correlate to the rays OA and OB.

I, the teacher, must be patient and wait until . . . . .

until some students note that the two (cos .., sin ..)

points marked by + and + represent the normalized

vectors from O to A and from O to B of length 1.

Thus as vectors

+ = (cos(α), sin(α)) =
A

∥A∥ = Ã and

+ = (cos(β), sin(β)) =
B

∥B∥ = B̃ .

We still need find a measure for the angle α − β

somehow between the rays OA and OB.
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What is cos(α− β) given the coordinates of

Ã = (cos(α), sin(α)), B̃ = (cos(β), sin(β))?

Can anyone recall the ’addition formulas’ for trig

functions? Were they ever proved?

Who remembers now?

Can Linear Algebra help us solve this geometric

problem?

What can we do with cos(α−β) = . . . . using ma-

trices to measure the angle between OA and OB?

Is there a way, what is the way?
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The trigonometric identities can indeed be estab-

lished via linear transformations and their stan-

dard matrix representations :
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Recall the linearity condition of linear functions f

f (au + bv) = af (u) + bf (v).

Consider two nonzero vectors au and bv ∈ R
2 with

a, b ∈ R and u, v ∈ R
2 and the diagonal au + bv of

the parallelogram that they form.

How does a planar rotation Rβ around the origin

by β change this or any parallelogram?

The rotated sides and their diagonal form another

parallelogram that is congruent to the original one,

and therefore

Rβ(au + bv) = Rβ(au) + Rβ(bv), i.e., Rβ is

linear.
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Thus the rotation Rβ of R2 around the O is a linear
function and has a standard 2 by 2 matrix representation.

What is the standard matrix representation for the counter-

clockwise rotation Rβ of the plane around the origin 0 by the

angle β?
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The standard matrix representation of a linear transfor-

mation R
2 → R

2 contains the images of the standard unit

vectors e1 =

(

1
0

)

and e2 =

(

0
1

)

of R2 in its columns.

Thus the matrix for the counter-clockwise rotation Rβ is

Rβ =











...
...

Rβ

(

1
0

)

Rβ

(

0
1

)

...
...











2,2

.

What are the images of the unit vectors e1, e2 of R2 under coun-

terclockwise rotation by β?
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By inspection, Rβ

(

1
0

)

=

(

cos(β)
sin(β)

)

and Rβ

(

0
1

)

=
(

− sin(β)
cos(β)

)

; Why is ↓ this correct? Explain.

i.e., Rβ =

(

cos(β) − sin(β)
sin(β) cos(β)

)

, a 2 by 2 matrix.
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If we now rotate the point (cos(α), sin(α)) by an additional

angle β counterclockwise around the origin, it moves to

(cos(α + β), sin(α + β)).

How does the 2 by 2 rotation matrix Rβ map (cos(α), sin(α))T?
(

cos(α+ β)
sin(α+ β)

)

!
= Rβ

(

cos(α)
sin(α)

)

=

(

cos(β) − sin(β)
sin(β) cos(β)

)(

cos(α)
sin(α)

)

=

(

cos(α) cos(β)− sin(α) sin(β)
cos(α) sin(β) + sin(α) cos(β)

)

∈ R
2 .

By comparing entries :

cos(α + β) = cos(α) cos(β)− sin(α) sin(β) and

sin(α + β) = cos(α) sin(β) + sin(α) cos(β) .

Thus we have derived both trigonometric addition formulas

(for sine and cosine) in one step by using fundamental con-

cepts from Linear Algebra.
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What about cos(α−β) = cos(∠(AOB)) . . . . . . , however ?

Cosine is an even function cos(−γ) = cos(γ) and sine is odd,

i.e., sin(−γ) = − sin(γ). Thus

cos(∠(AOB)) = cos(α− β) = cos(α+ (−β))

= cos(α) cos(−β)− sin(α) sin(−β)

= cos(α) cos(β) + sin(α) sin(β) .
↑ even fctn ↑ odd fctn
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What does the cosine difference formula have to do with our

original angle problem?

The geometric angle is determined by the vectors or line seg-

ments OA and OB in R
n.

How does cos(α − β) relate to the geometry and the coordi-

nates of A, B and O?

Thus far, we know three formulas that relate space angles

and vectors :

(1) cos(∠(AOB)) = cos(α− β) = cos(α) cos(β) + sin(α) sin(β),

(2) (cos(α), sin(α)) =
A

∥A∥ and (3) (cos(β), sin(β)) =
B

∥B∥ .s

What are their relationships? How can we express

cos(α) cos(β) + sin(α) sin(β) or cos(α− β)

in terms of the given vectors from O to A and B?
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The right hand side cos(α) cos(β) + sin(α) sin(β) in equa-

tion (1) of the cosine difference formula is the dot product of

the two unit vectors (cos(α), sin(α))·(cos(β), sin(β)) derived

from OA and OB. Thus

cos(∠(AOB)) = cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (1)

= (cos(α), sin(α)) · (cos(β), sin(β)) (2), (3)

=
A

∥A∥ · B

∥B∥ =
A ·B

∥A∥ ∥B∥ .

This is the ’dot product’ cosine angle formula for R
n.

The space angle example takes about 1 or 2 hours of intense

class time and student work.

Student question: When is the angle ∠(AOB) a right angle,

i.e., when are the rays from O to A and O to B perpendicular?
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Precisely when cos(∠(AOB)) = 0 or when the dot product

A · B = 0 according to the dot product cosine angle formula.

We can now solve a typical problem of linear algebra: Given

two nonzero vectors x and y in n-space, orthogonalize y with

respect to x so that the resulting vector z and x are perpendic-

ular to each other.

To simplify, normalize the vector x ̸= o ∈ R
n to become a

unit vector x̂ of length 1 by dividing x by its euclidean length

or norm ∥x∥ =
√
x · x, i.e., x̂ = x/∥x∥ = x/

∑

x2j ̸= on.

Next we set z = y − (x̂ · y)x̂ and verify that x̂ ⊥ z, namely

x̂ · z = x̂ · y − (x̂ · y)x̂ · x̂) = x̂ · y − x̂ · y = on.

If we normalize z to become ẑ with ∥ẑ∥ = 1, then both vectors

x̂ and ẑ have length 1 and x̂ and ŷ are mutually orthogonal.
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For the n by 2 matrix

U =







...
...

x̂ ẑ
...

...







n,2

note that UT
2,n · Un,2 = I2 =

(

1 0
0 1

)

due to the construction

of the vectors x̂ and ẑ.

Here I2 is the 2 by 2 identity matrix and UT with 2 rows and n
columns denotes the transpose matrix of Un,2 that contains the

columns of U in its rows.

Vector set orthogonalizing processes and orthogonal matrices

Un,n with UT · U = In play a central role in Matlab and in

the additional matrix eigenvalue codes for real and complex

square matrices that we shall study in Lesson Plan 7 next.
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