
Lesson Plan 5 on Krylov Vector Iteration,

Experiments and MatLab Coding

Frank Uhlig
Department of Mathematics and Statistics,

Auburn University, Auburn, AL 36849-5310, USA
uhligfd@auburn.edu

This lesson plan will take 4 class hours to cover basic properties of vector iterations. It

proves that all square matrices have eigenvectors and eigenvalues and directs students into

simple extensions of the basic Krylov iteration method, possibly on their own.

It is designed to lead students further into computer software and computations and en-

courages mathematical trial and error investigations and beginning math research.

(version August 3, 2023) iii + 21 p.; 4 - 5 class days

Concepts, Notions and Definitions in Lesson Plan 5

Krylov Subspace

Vector Iteration or Power Method

Matlab Software

Eigenvalues, Eigenvectors

Matlab Coding

Model Equation

Divergence

Normalized Vector Iteration

(continued)

ii

Minimal Polynomial

Fundamental Theorem of Algebra

Roots of Minimal Polynomial

Maximal Modulus Eigenvalue

Shifted Matrix

Other Eigenvalues

Nullspace

iii

Now we begin to include Matrix Analysis in our lessons. The

term ’analysis’ in math typically deals with computations and

estimating errors of algorithms, proving convergence etc.

Numerical Analysis depends on computers, software and al-

gorithms rather than on algebraic equation solving that un-

derlies Matrix Theory with its indisputable proofs. This realm

gives us theoretically correct equations and processes. Often

theoretical formulas can only be realized in theory and they

may be of little use for computational math problems.

We want to experiment with Vector Iterations here to com-

pute eigenvalues of matrices based on Krylov’s Vector Itera-

tion ideas and introduce simple Matlab commands and codes.

Our ’number crunching approach’ in the second half of our

elementary Modern Matrix Theory course is very intense.

The power of computations will help us in all subsequent mod-

ern Matrix based Linear Algebra lessons. 1

Krylov Vector Iteration involves a matrix An,n and a non-zero

vector b ∈ R
n or Cn and uses the set of Krylov vectors

{b, Ab, A2b (= A(Ab)), A3b, ..., Ak−1b, Akb (= A(Ak−1b).

Here the exponent k can be any positive integer.

[Krylov subspace based methods today are the main tool for

solving linear equations and matrix eigenproblems for high di-

mensions n ≫ 11, 000 or thereabouts.]

Basic Krylov iterations help us to unlock hidden properties of

matrices easily by using software rather than pencil and paper.

Let us start a vector iteration in Matlab right now and observe

what happens for a diagonalizable A5,5 and b, both with ran-

dom real entries, for the Krylov vectors as regards A’s eigen-

values.
2

First we define our inputs A and b and determine A’s eigenval-

ues with Matlab’s eig.m QR algorithm, sorted in decreasing

magnitude for comparison.

This is our set-up Matlab code :
≫ n = 5, A = randn(n), b = rand(n,1), EA = eig(A),

[,m] = sort(abs(EA),’descend’); EA = EA(m), A, b, EA

This pair of code lines defines A and b for use in Matlab as

A =













2.5088 −0.3712 −0.8951 0.3173 −1.1714

1.0635 −0.7578 −0.4093 0.0780 −1.3853

1.1569 −0.5640 −0.1609 1.3244 0.3105

0.0530 0.5551 0.4093 −0.2132 −0.2495

−1.2884 −0.5568 −0.9526 −0.1345 0.5037













and b =













0.1182

0.9884

0.5400

0.7069

0.9995













.

The eig(A) Matlab command evaluates the five eigenvalues

of A as 3.0042,−1.4579,−0.0341+0.8000i,−0.0341−0.8000i, 0.4026 ∈

C when sorted in decreasing absolute value order.

Here is the Krylov vector set of b, Ab, A2b, ... for selected pow-

ers of A:
3

b Ab A2b A5b A10b A20b A50b A80b
1.1816e-01 -1.500e+00 -2.5520e+00 -7.3153e+01 -1.7355e+04 -1.0400e+09 -2.2325e+23 -4.7923e+37

9.8842e-01 -2.174e+00 8.9869e-01 -4.3445e+01 -9.2270e+03 -5.5456e+08 -1.1904e+23 -2.5553e+37

5.3998e-01 7.3896e-01 -3.8181e-01 -2.1290e+01 -4.8777e+03 -2.9277e+08 -6.2846e+22 -1.3491e+37

7.0692e-01 3.7595e-01 -8.6218e-01 -1.2245e+01 -3.5345e+03 -2.1072e+08 -4.5233e+22 -9.7097e+36

9.9949e-01 -8.0854e-01 1.9814e+00 4.9581e+01 1.3088e+04 7.8225e+08 1.6792e+23 3.6045e+37

What is happening? Why can Krylov vectors get so huge?

Time for student discussions among themselves, their ideas,

explanations ..., observations, ...

Back to arithmetic here : Heuristically, the ten power iterations

from A10b to A20b (for example) have increased the resulting

iterates by a factor of around 105 in magnitude from around

104 to 109. How big is the average increase x per iteration?

x10 ≈ 105

is the model equation for the average Krylov vector growth.

Taking logarithms on both sides, we have 10 · log10(x) ≈ 5 or

log10(x) = 1/2 and x ≈ 101/2 ≈ 3 since 32 = 9.

4

What about the magnitude increases in the 30 step transitions

from A20b to A50b or from A50b to A80b in our data table?

Both Krylov iterates increase by around 1014 and they lead to

the arithmetic model equation y30 ≈ 1014.

Thus 30 · log10(y) ≈ 14, log10(y) ≈ 1/2 and y ≈ 3 again –

with some grains of salt.

Something mathematical is clearly happening here!

Switching to matrix analysis mode, vector iteration is clearly

diverging here. Why ? How can matrix algebra help?

Our given matrix A5,5 has five distinct eigenvalues, sorted by

magnitude |λ1|(≈ 3) > |λ2| > ... > |λ5| as Matlab has shown.

Therefore A is diagonalizable for its complex eigenvector ba-

sis U of C5, collected column-wise in U5,5.

5

The theory based eigen-equation for A is AU = UD with

D = diag(λj) diagonal for A’s eigenvalues λj .

According to Matrix algebra each vector b ̸= on is a unique

and non-zero linear combination b =
∑n

j=1
αjuj of the eigen-

vector basis U = {u1, ..., un} for A.

In the following simplistic algebraic deduction we assume that

α1 ̸= 0:

Aℓb = Aℓ

n
∑

j=1

αjuj =
n
∑

j=1

αjA
ℓuj

=
n
∑

j=1

αjλ
ℓ
juj (∗)

= α1λ
ℓ
1

(

u1 +
α2

α1

(

λ2

λ1

)ℓ

u2 + · · ·+
αn

α1

(

λn

λ1

)ℓ

un

)

.

6

In formula (∗), the fractions

∣

∣

∣

∣

λj

λ1

∣

∣

∣

∣

< 1 for all j = 2, ..., n and

thus – analytically speaking again – the powers Aℓb converge

to α1λ
ℓ
1
u1.

If |λ1| > 1 – as is the case for our A5,5 and α1 ̸= 0 in b then

the Krylov vector iterations Aℓb clearly diverge to infinity or

to an infinitely large multiple of the first basis vector u1 for A.

Matrix Algebra now will rescue us from this growth dilemma:

If we were to normalize the ever increasing vectors Aℓb when

λ1 > 1 and replace it by
Aℓb

∥Aℓb∥

at every power ℓ, then the iterates Aℓb/∥Aℓb∥ would always be

unit vectors and convergence could be easily read off the data.

7

b Ab/||Ab|| A2b/||A2b|| A10b/||A10b|| A20b/||A20b|| A50b/||A50b|| A80b/||A80b||
1.1816e-01 -7.3257e-01 -7.3146e-01 -7.1254e-01 -7.1241e-01 -7.1241e-01 -7.1241e-01

9.8842e-01 2.5798e-01 -4.9238e-01 -3.8048e-01 -3.7987e-01 -3.7987e-01 -3.7987e-01

5.3998e-01 -1.0960e-01 -3.1935e-01 -2.0075e-01 -2.0055e-01 -2.0055e-01 -2.0055e-01

7.0692e-01 -2.4749e-01 -8.3940e-03 -1.4401e-01 -1.4434e-01 -1.4434e-01 -1.4434e-01

9.9949e-01 5.6879e-01 3.4709e-01 5.3524e-01 5.3584e-01 5.3584e-01 5.3584e-01

Thus normalized Krylov vector iterations converge quickly to

the dominant eigenvector u1 of A that was computed for the

max modulus eigenvalue λ1 of A by Matlab earlier.

How can we find the eigenvalue λ1 of A from the normalized

eigenvector of A80b/||A80b|| for example?

By definition Au1 = λ1u1. In double precision this means for

u1 =













−7.124070069031886e− 01
−3.798708481611794e− 01
−2.005483353698798e− 01
−1.443426438954290e− 01
5.358357598800159e− 01













and λ1 the following :

8

Au1 = A











−7.124070069031886e− 01

−3.798708481611794e− 01

−2.005483353698798e− 01

−1.443426438954290e− 01

5.358357598800159e− 01











= λ1











−7.124070069031886e− 01

−3.798708481611794e− 01

−2.005483353698798e− 01

−1.443426438954290e− 01

5.358357598800159e− 01











= λ1u1,

or expressed in Matlab notation for each component of u1 :

λ1 = Au1./u1 =













3.004173549878356
3.004173549878356
3.004173549878357
3.004173549878356
3.004173549878356













in each compo-

nent, which agrees almost verbatim with Matlab’s computed

leading eigenvalue 3.004173549878358 for A.

9

How do we know that all matrices An,n have eigenvalues?

Look at the Krylov vector progression b, Ab, A2b, ..., Anb for

b ̸= on. These are n + 1 vectors in R
n oder Cn and thus they

are linearly dependent with maximally n pivots in their asso-

ciated n by n + 1 column vector matrix’s row echelon form.

I.e.,
Akb = c0b+ c1Ab+ · · · + ck−1A

k−1b

for some k ≤ n where not all ci are 0. Thus

(Ak− ck−1A
k−1− · · · − c1A− c0In) b = on . (∗∗)

Now we study the polynomial

pA(x) = xk − ck−1x
k−1 − · · · − c1x− c0.

pA(x) is called the minimal polynomial of A if k is minimal

for A where k ≤ n the first column in the Krylov progression

matrix’s row echelon form without a pivot.
10

Next we use the Fundamental Theorem of Algebra.

Fundamental Theorem of Algebra

Every real or complex polynomial p(x) =
∑j=0

j=k ajx
j of de-

gree k has k roots xi ∈ C with p(xi) = 0.

I.e., p(x) = ak(x − xk) · · · (x − x1) with k possibly repeated

roots xj .

Thus
pA(A) = Ak − ck−1A

k−1 − · · · − c1A− c0In

= (A− xkIn) · · · (A− x1In)

for the roots xi of A’s minimal polynomial pA(x).
From equation (∗∗) and

pA(A)b = (A−xkIn) · · · (A−x1In)b = on for b ̸= 0 (∗∗∗)

the matrix product pA(A) = (A − xkIn) · · · (A − x1In) is

singular.
11

What about the individual factors A− xiIn?

Can any one of these be nonsingular?

Clearly any two degree one factors of pA(A) commute since

(A− xℓIn)(A− xmIn) = (A− xmIn)(A− xℓIn)
for all ℓ and m by inspection.

If one factor matrix A − xℓIn is nonsingular then it can be

moved up to the front of writing pA(A) and

q(x) = pA(x)/(x− xℓ)
has degree k − 1. Then

q(A) b = (A− xℓIn)
−1pA(A) b ̸= on

since (A− xℓIn)
−1 is nonsingular as well and b ̸= on.

This makes q a minimal polynomial for A of lower degree than

k which contradicts the minimal property of pA.

12

Thus each factor A − xiIn of pA(A) is singular and A has at

least k eigenvectors for the k eigenvalues xi.
In other words, A has at least one eigenvector in the nullspace

of A− xiIn for each i = 1, ..., k ≤ n.

We have spent a considerable amount of time and space to

shore up our theoretical knowledge of eigenproperties of ma-

trices.

Unfortunately the minimal polynomial of a matrix An,n cannot

help us in any way to compute those pesky – elusive for 150

years – matrix eigenvectors and eigenvalues.

Krylov’s vector iteration method allows us to compute addi-

tional eigenvalues besides the max modulus one.

13

If λ1 is the maximal modulus eigenvalue of An,n and u1 the

associated eigenvector, then B = A− λ1In has the eigenvalue

0 for the same eigenvector u1.

This statement is a worthy exercise for all students to work

through theoretically and try to prove that this is true.

A Krylov iteration with B = A − λ1In and the same vector

b ̸= on computes an eigenvector vB for B and B’s maximal

modulus eigenvalue µB.

Then λ2 = λ1+µB is an eigenvalue of A with vB as associated

eigenvector.

Students, please check this !

14

Here are the numerical results of Krylov normalized vector it-

erations for our original example matrix A5,5, b, and B.

B = A−3.006...∗ I5 has the nonzero eigenvalue 8.85... ·10−16 near

zero under Matlab which is comforting and expected.

The dominant eigenvalue 4.46211... of B = A − λ1In under

Krylov vector iteration with b is µB = 4.46211....

This translates to a second eigendata pair of A at the eigen-

value λ2 = λ1 + µB = −1.457941230309017 for the vector iteration

computed eigenvector vB. This agrees in all but the two last

digits with the eigen-data computed for A via Matlab.

For diagonalizable real 3 by 3 matrices A3,3 we have also been

able to compute the third eigenvalue and its eigenvector via

Krylov vector iteration.

15

For example for the random entry matrix A3,3 =




−1.203268186415017 −0.1729138442591677 −3.232037795940007
1.037815639485240 −1.208652054740199e −1.086959229461330

−0.8459442123361178 −0.2.971267999954044 −1.426436159479723



 ,

Matlab computes A’s three eigenvalues as

0.5160221986685007,−2.867153146123481,−1.487225453179958.

The first two eigenvalues λ1 and λ2 above and their associated

eigenvectors u1 and u2 are replicated exactly by using Krylov

vector iteration for A and B = A − λ1I3 from any starting

vector b ̸= o3 as we have just learnt to do, except for the very

last digit.

To locate the third eigenvalue of A3,3 , we find a column vector

w3 in R
3 that lies in the nullspace of V =

(

· · · uT
1

· · ·

· · · uT
2

· · ·

)

2,3

.

16

Then we operate with W =







...
...

...

u1 u2 w
...

...
...







3,3

on our 3 by 3

example matrix A and form the matrix product UT = W−1 ∗
A ∗W it becomes UT =
(

−2.867153146123482 −3.46944 · 10−16 −1.521078755080422
1.11022 · 10−16

0.5160221986685007 −1.852060317168440
1.11022 · 10−16

2.49800 · 10−16 −1.487225453179958

)

.

Miraculously UT is upper triangular (therefore its name UT)

when we set the minuscule entries of magnitudes around 10−16

in UT equal to zero.

All three eigenvalues of A sit on the diagonal of

UT# =

(

−2.867153146123482 0 −1.521078755080422
0 0.5160221986685007 −1.852060317168440
0 0 −1.487225453179958

)

.

17

We already know the eigenvectors u1 and u2 for λ1 ≈ −2.867
and λ2 ≈ 0.516 of A.

How to find an eigenvector for the third eigenvalue

λ3 ≈ −1.4877 of A?

Note : For every eigenvalue λ of a square matrix An,n, the

matrix A − λIn is singular and each vector in its kernel or

nullspace is an eigenvector of A.

Every student should verify the last sentence now.

Thus we only need to find the vectors in the nullspace of A−
λIn. We could do this via a row reduction and solve the homo-

geneous linear system system (A− λIn)x = on. Or we could

use Matlab which has a built-in nullspace function null.m .

18

Doing the latter and using Matlab on the Krylov vector it-

eration data evaluates the eigenvector w for the eigenvalue

λ3 ≈ −1.4877 of our example matrix A3,3 as

w =





0.3354286828360653
−0.9386890693559886
0.07968958402733951



,

exactly as Matlab’s eig.m computed w via Francis’ QR al-

gorithm.

19

At the very end of Lesson Plan 7, we will pick up our recent

thoughts and efforts to find additional matrix eigen-information

from Krylov.

There we will learn how to compute multiple matrix eigenvec-

tors and eigenvalues by using Krylov iterations combined with

Householder transform induced basis changes. This method

will let us deflate the n by n matrix eigen problem, one dimen-

sion at a time.

20

Lesson Plan 6 studies angles between vectors in C
n, orthog-

onal vectors and orthonormal bases, orthogonal and unitary

matrices Q, as well as special orthogonal elimination matrices

such as Householder transformations H . Householder trans-

forms play a key role in computing orthogonal bases of sub-

sets, in factorizing general square matrices An,n ∈ Cn,n as

Q · R with R upper triangular, and in solving the complete

matrix eigenproblem via Krylov vector iteration.

21

