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This Lesson Plan 4 introduces coordinate vectors with respect to general bases U and how

to translate between coordinate vectors under basis change. We study matrix similarities,

diagonalizable matrices and eigenvalues and eigenvectors of square matrices. And finish

by solving linear systems of ordinary differential equations and a short look at the history

of Matrix Theory.
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Concepts, Notions and Definitions in Lesson Plan 4

For [ 1 ] p. 2

Coordinate Vector

Standard E = {ei} Basis

U = {ui} Coordinate Vector xU

Column Vector Matrix U

Transform U to V Coordinate Vectors

Multi-augmented Matrix (V |U)

For [ 2 ] p. 6

Basis Change

Matrix Representation AU for Basis U

Matrix Similarity
(continued)
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Diagonalizable Matrix

Eigen-equation A · U = U ·D

Eigenvalues, Eigenvectors

U = {ui} Eigenvector Basis

For [ 4 ] p. 10

Eigenpairs under Basis Change

Calculus and Matrix Algebra

Systems of Linear Differential Equation

General Solution

For [ 5 ] p. 14

History of Matrix Theory and Computations
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This is the transitory lesson starting from the linear term in

Linear Algebra progressing to nonlinear Matrix Algebra.

Going forth from our first lesson on linear transformations and

their representation as matrix × vector products for the stan-

dard E basis of the unit vectors ei ∈ R
n, we now deal with

arbitrary bases U = {u1, ..., un} and how to represent vectors

and linear transformations with respect to bases other than E .

We introduce U coordinate vectors and how to relate coordi-

nate vectors of points in R
n for different bases.

Then we represent a linear transformation given in its stan-

dard E representation AE with respect to other bases U as AU .

This introduces matrix similarities and the quest of finding

bases U from AE that give AU = U−1AEU sparsity which gives

us deeper insights into a linear transform’s intrinsic qualities

when operating on R
n.
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[ 1 ] Coordinate Vectors

There are many, nay infinitely many different bases of Rn since

any set of n linearly independent vectors in R
n is a basis.

Any basis U of Rn can be used to describe locations and ac-

tions in R
n.

The standard basis E = {e1, .., en} of Rn consists of the unit

vectors ei ∈ R
n with zeros in every position except for a 1 in

position i, i.e.,

e1 =



















1
0
0
0
...

0



















n

, e3 =



















0
0
1
0
...

0



















n

, or en−1 =















0
...

0
1
0















n

for example.
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Thus far we have dealt with vectors x in R
n in the standard

basis E . For clarity purposes we write x = In · x = xE with E
subscripts for any standard vector x ( for a while now ) :

xE =







...
...

e1 . . . en
...

...






xE = In · xE .

What should xU describe for another basis U = {u1, ..., un}

with all ui for 1 ≤ i ≤ n in standard E vector form uiE?

Clearly the U coordinate vector xU must satisfy

xE =







...
...

u1E . . . unE

...
...






xU = Un,n · xU

for the column vector matrix U of the basis vectors {uiE} in U .
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For any basis V = {v1, ..., vn} of R
n and its column vector

matrix V comprised of the basis vectors {uiE} we likwise have

xE = V · xV .

And thus xE = U · xU = V · xV or

V −1U · xU = xV and xU = U−1V · xV

using matrix inverses of the nonsingular matrices V and U .

Thus V −1U transforms U coordinate vectors to V coordinate

vectors and U−1V transforms V coordinate vectors to U coor-

dinate vectors.

Both coordinate transforms use the E coordinate vectors xE =
U · xU and xE = V · xV , respectively, as intermediaries.

This reminds us of trying to translate a phrase from Ukrainian

to Vietnamese by using a Ukrainian to English dictionary first

and then an English to Vietnamese dictionary.
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How can the coordinate vector transforms V −1U and U−1V be

computed quickly and accurately without much pain?

Use software that can handle vectors, matrices, and row reduc-

tion, such as Matlab, Mathematica, Python, Octave et cetera.

Start from the multi-augmented matrix

(V |U)n,2n

and reduce V to In on the left by Gaussian elimination that

is performed across each complete row of the n by 2n matrix

(V |U)n,2n : V U
...

...

row
...

... reduce

↓ ↓

In V −1 · U

(∗)
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How could students use the previous scheme (∗) to compute

the inverse A−1 of a square matrix A or check if a matrix An,n

is invertible?

[ 2 ] Coordinate Vectors under Basis Change

Our first lesson studied linear transformations

f : x ∈ R
n → f(x) ∈ R

n

by using the associated matrix × vector product of the stan-

dard matrix representation AE of f and the standard vector

representation xE :

AE =







...
...

f(e1) . . . f(en)
...

...






· xE .

How can another basis U represent the same linear transfor-

mation f as AU that maps U vectors to U vectors directly?
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This task is solved in two steps:

(a) We know that xE = UxU is an E vector and therefore

AE · (UxU)E remains an E vector.

(b) Since yU = U−1yE for all E vectors y, (a) tells us that

U−1(AEUxU)E is a U vector. I.e., U−1AEU maps all U
vectors xU to U vectors and AU = U−1AEU is as desired.

The last 5 pages have contained very complicated algebraic

manipulations of subscripted vectors and matrices. Ideally

these equations and their development should be covered sev-

eral times, first by the instructor - slowly and carefully; then

repeated in student presentations in parts and again in later

lessons when problems arise.

Double subscripts turn everybody off, sorry. But for clarity

and understanding of the what and the which, they are essen-

tial here and necessary in nonlinear Modern Matrix Theory.
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Once these notions are mastered, the subscripts can be dropped

and every basis change operation can be implemented as sim-

ple basis vector matrix multiplications.

Good luck and hope for the best.

[ 3 ] Matrix Representations under Special Basis Changes

Most, (almost all) square matrices An,n allow a sparse diago-

nal matrix representation for a matrix associated basis UA.

[ Exceptions to this ’almost rule’ will be dealt with later. ]

An exercise problem (use software, please) :

For U =





−3 0 1
0 1 0
1 0 1



 and AE =





2 0 3
0 −1 0
1 0 4



 find the

matrix representation AU = U−1 · AE · U of the underlying

linear transformation for the basis U of R3.
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What does AU look like? What is AEu1, AEu2, and AEu3?

Why and how are the basis vectors in U special for A?

Real or complex nonzero vectors in n-space that are replicated

in their direction when multiplied by a matrix A such as u3 in

AEu3 = 5 u3 above are called eigenvectors of A in English

and the scaling factor 5 above is called an eigenvalue of A.

The eigenvalue/eigenvector equation comes in two forms for

diagonalizable matrices A :

U−1 · A · U = D or A · U = U ·D.

In the second form of the eigen-equation the eigenvector basis

matrix U appears to be dancing from the right side to the left.

This is due to the non-commuting nature of matrix products.

Soon we will understand that all square matrices have eigen-

values and eigenvectors - and that very few matrices commute.
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At this time students should be able to answer these questions:

Does the matrix C =

(

4 8
1 2

)

have the eigenvalue 1, 6 or 0?

and

Are v =

(

4
2

)

, u =

(

8
2

)

, r =

(

0
0

)

or w =

(

4
1

)

eigen-

vectors of C?

[ 4 ] Eigenpairs under Basis Change and

Systems of Linear Differential Equations

If A = AE is the standard matrix representation of a linear

transformation f : Rn → R
n and A has the eigenpair λ and

w ∈ R
n, i.e., if Aw = λw, what happens to the eigenpair λ

and w of A when we represent f with respect to another basis

U as AU = U−1AEU?
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Multiplying AU = U−1AEU on the right by U−1 we obtain

AUU
−1 = U−1AE

and thus

AUU
−1w = U−1AEw = U−1Aw = U−1λw = λU−1w .

Reading the above equation as AU(U
−1w) = λ(U−1w) makes

U−1w an eigenvector of AU for the same eigenvalue λ as the

standard matrix representation AE of the linear transformation

f and it modifies the eigenvector w of A.

Since xE = UxU holds for basis changes from E to U and

w = wE , we see that U−1w = U−1wE = wU is the U basis

vector wU of the E eigenvector wE of A = AE .

Hence eigenvalues remain the same under any basis change

V → U , while the corresponding eigenvectors morph from V
vectors to U vectors and describe the same point in space.
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With a little help from Calculus and Matrix Algebra we can

now solve linear differential equations

ẋ(t) = A · x(t)

for diagonalizable system matrices An,n.

Given U−1AU = D for an eigenvector basis matrix U of A and

and D a diagonal matrix, we multiply the linear differential

equation by U−1 from left and obtain

U−1ẋ(t) =
d(U−1x(t))

dt
= U−1Ax(t) = U−1A(UU−1)x(t)

= (U−1AU)U−1x(t) = D · U−1x(t) .

This is a differential equation in y(t) = U−1x(t).
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If n = 2 and A2,2 is diagonalizable for D =

(

λ1 0
0 λ2

)

, then

ẏ(t) =

(

ẏ1(t)
ẏ2(t)

)

=

(

λ1 0
0 λ2

)(

y1(t)
y2(t)

)

=

(

λ1 y1(t)
λ2 y2(t)

)

.

[ From Calculus we know that f(x) = eαx has the derivative

f ′(x) = α eαx and thus yi(t) = eλit + ci for i = 1, 2. ]

Finally using x(t) = Uy(t), the general solution x(t) of the

linear differential equation ẋ(t) = Ax(t) is

x(t) =

(

x1(t)
x2(t)

)

= U

(

eλ1t

eλ2t

)

+

(

c1
c2

)

for arbitrary constants ci.
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[ 5 ] Namings, Names and History

The real or complex scalars λ in the eigenvalue-eigenvector

equation Ax = λx were named around 1820 by Cauchy as

“valeurs propres de matrices” in French. Later they were called

Matrizeneigenwerte in Germany where this subject was then

developed.

Now they go by the names of “eigenvalue” and “eigenvector”

in English, having been anglicized from both French and Ger-

man, using Greek and Latin letters, respectively - in quite an

international endeavor.

Even real matrices can have complex eigenvalues and eigen-

vectors due to Gauss’ Ph. D. thesis of 1799 that established the

’Fundamental Theorem of Algebra’ for roots of polynomials.
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The characteristic polynomial f(x) = det(A− xIn) of matri-

ces An,n and polynomial root finding idea of Cauchy (∼1820)

has dominated Linear Algebra for 100 ++ years without ever

finding ways or means to extract matrix eigenvalues reliably.

In the 1930s there were attempts to let matrices take care of

matrix problems themselves through Krylov vector iterations.

But the full benefit of matrix eigenvalues came for us only

with Francis’ and Kublanowskaya’s QR based eigenvalue al-

gorithms of 1961.

Francis implicit QR method was not fully understood for 20

years until Watkins established its foundation in subspace iter-

ation and his insight was not implemented in computable form

until another 20 years later in 2002 in the multishift implicit

QR version by Braman, Byers and Mathias.
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This multishift matrix factorization based method reached Mat-

lab only in the early 2000s and lets us now solve matrix eigen

problems efficiently until dimensions around n = 11, 000.

The short bits of math matrix history reveal the sad fact that

90+ % of our elementary Linear Algebra text books only con-

tain, and that 95 % of our sophomore students are only taught

the dead-end path of determinants, characteristic polynomi-

als, and subsequent polynomial root finding methods for ma-

trix eigenvalues.

This unprecedented and unjustifiable situation justifies us to

use the term ’modern’ in our efforts to bring Modern Matrix

Theory into the college classroom now.
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Future Lesson Plans will study the Krylov subspace method

that computes matrix eigenvalues of square matrices itera-

tively through vector iteration.

Thereafter we study orthogonal matrix factorizations and spe-

cial matrices that help with QR factorizations and let us find

orthonormal basis for matrix subspaces accurately.

This will help us to comprehend the basics of modern eigen-

value evaluations via Francis’ QR algorithm and Krylov vec-

tor iteration and lead to further applications.
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