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In Lesson Plan 3 we apply row reduction to square matrix inversion and
then study how to factor matrices Am,n as Lm,m ·Rm,n with L lower trian-
gular and R upper triangular.
Row echelon form reductions help us to find the column vector space of a
matrix and its nullspace leading to the Dimension Theorem and to a prac-
tical definition of linear (in-)dependance for sets of vectors.
The lecture takes about 6 hours of class time, i.e., 4 hours for lectures and
2 for student discussions, explorations and questions. This slow speed is
essential for engaging students in the learning process.
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In this lesson we develop useful information and how to ex-

tract it from a Row Echelon Form of any matrix Am,n .

Specifically we explain matrix inversion and discuss the exis-

tence of inverses for linear maps and matrix mappings in an

abstract and proving way.

This is followed by the mechanics of matrix multiplication A ·
B, or more abstractly of the composition g(f(x)) of linear

transformations f and g.

Then we introduce the LR matrix decomposition of arbitrary

matrices Am,n as the product of a lower triangular elimina-

tion matrix L and an upper triangular matrix R and learn that

matrices generally do not commute, i.e., that A ·B ̸= B ·A in

general.
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[ 1 ] Matrix Inversion

When can a function f : Rn → Rm be inverted, i.e., when is

every b ∈ Rm the unique image under f of some x ∈ Rn?

To be invertible, any function f : Rn → Rm must satisfy two

conditions :

(A) If some images b ∈ Rm have multiple origins in Rn under

f , then f cannot be inverted since invertible functions need to

map consistently one-to-one.

(B) If f(Rn) ⫋ Rm then the inverse cannot exist as a function

with the necessary domain Rm.

How do (A) and (B) apply to linear transformations L or to

matrix × vector products Am,n · x with x ∈ Rn?

The REF of A can help us :
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For matrices Am,n there are three cases to look at.

( m > n ) If A : Rn → Rm has more rows than columns,

then the row echelon of the REF of the augmented matrix

(A|b)m,n+1 contains at most n pivots and m−n ≥ 1 zero rows

at the bottom. Thus there are many vectors b ∈ Rm for which

the linear system Ax = b has no solution and according to (B)

an inverse function for A does not exist.

( m < n ) If A : Rn → Rm has more columns (n) than rows

(m), then the row echelon of the REF of Am,n can contain at

most m pivots and must have at least n−m ≥ 1 free columns.

Thus for any vector b ∈ Rm there are many vectors in Rn that

A maps to b. And according to (A) the matrix A cannot be

inverted.

Thus only square matrices An,n : Rn → Rn can be inverted –

if A satisfies both conditions (A) and (B).
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For An,n to be invertible, there must be n pivots in its REF.

If there are fewer than n pivots, then not all linear systems

Ax = b can be solved for x.

Theorem : A matrix Am,n is invertible if and only if m = n
and A’s Row Echelon Form contains n pivots.

[ 2 ] Function and matrix concatenations or compositions

We compose or concatenate two functions f : Rn → Rm and

g : Rm → Rk in g ◦ f : Rn → Rk by defining (g ◦ f)(x) =
g(f(x)) for all x ∈ Rn. (In reverse order, inner f to outer g)

How do we concatenate two linear transformations T = f and

S = g that are given by their standard matrix representations

Am,n for T = f and Bk,m = g for S?

(B◦A)x = B(A(x))

[

(∗)
= (Bk,m · Am,n)x ∈ Rk for all x ∈ Rn

]

.
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A question for students :

Is the composition of linear transformations itself a linear trans-

formation?

How can one insure, i.e. prove that the concatenation of two

compatible matrices B ◦ A is linear, i.e., can B ◦ A be repre-

sented by a standard matrix?

Who can prove the linearity condition for B ◦ A, namely that

(B ◦ A)(αu+ βv) = ... ...

... ... = α(B ◦ A)(u) + β(B ◦ A)(v)

for all scalars α and β and all vectors u, v ∈ Rn if A is m by

n and B is k by m so that B ◦ A maps n vectors to k vectors.

Now the teacher best leave the classroom – and lets the stu-

dents solve this question internally, from learner to learner.
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Back to the matrix product B · A defining equation

(Bk,m · Am,n)x
(∗)
= B(A(x)) = (B ◦ A)(x) .

Matrix multiplication is easily established by remembering the

construction of standard matrix representations of linear trans-

formations such as B ◦ A.

The standard matrix representation of B ◦ A : Rn → Rk con-

tains the images of the unit vectors ei of Rn in its columns.

Starting from A, what are the column vectors A(ei) of the ma-

trix representation of A?

They are the columns ai of A =







...
...

a1 · · · an
...

...







m,n

; A(ei) = ai.

How does Bk,m then map the vectors A(ei) = ai ∈ Rm?

By evaluating the dot product of each of B’s k rows in Rm

with each of the columns ai ∈ Rm of A.
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Forming the matrix product B · A of Bk,m and Am,n requires

k · n dot product evaluations between all rows (k) of the first

factor B and all columns (n) of the second matrix factor A.

Each of these dot products in turn requires m multiplications.

If m = n = k and both A and B are square, then multiplying

B ·A requires n3 multiplications. Therefore numericalists say

that n by n matrix multiplication is an O(n3) process.

Expressed graphically, matrix multiplication works in this way:

Bk,m · Am,n =






...
(

· · · bi · · ·
)

...






·






· · ·







...

aj
...






· · ·






=



















...

(

· · · bi · · ·
)







...

aj
...







...



















k,n

← i .

column ↑ j

row i × column j
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[ 1p ] Practical Matrix Inversion

Here we construct the inverse X of an invertible matrix An,n

via the REF of A.

Clearly the matrix product A · X acts like the identity matrix

In =







1 0
. . .

0 1






would since each column xi of the right

inverse X of A satisfies A(xi) = ei for i = 1, ..., n.

If we solve A(xi) = ei for each i, we would perform the iden-

tical row reduction process of A n times. More economically

we instead work on the multi-augmented matrix (A|In)n,2n.

The REF of this n by 2n matrix would have n pivots 1 on

its diagonal and all zeros in its lower triangular part if we row

reduced it and scaled all pivots to 1 as explained in part [ 2 ].
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But the upper triangle of the leading n by n matrix would still

be dense.

To assemble the columns of A−1 in the trailing n by n matrix

in the (A|I) scheme, we must reduce the leading n by n matrix

part above the diagonal to create In in its leading square.

Therefore we eliminate the entries of the nth column in the re-

duced multi-augmented matrix next by subtracting appropriate

multiples of its last full row from each row above. This gives

us the last column xn of the inverse of A.

Then we repeat this upper triangle zero-out process with columns

n− 1 and go backwards and up through column 2.

Once completed, we have computed the multi-augmented ma-

trix (In|A
−1) which is the Reduced Row Echelon Form or the

RREF of (A|I) with A and A−1 interchanging their positions.
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[ 1a ] Abstract Linear Algebraic Results

and Commuting Matrices

We have computed the matrix inverse X = A−1 on the right

side of An,n if A is invertible.

What about left inverses Y of A with Y A = In? If Y A = I
and AX = I , then

Y = Y I = Y (AX) = (Y A)X = IX = X .

Thus right and left inverses Y and X of an invertible ma-

trix A are identical. Since the right inverse is uniquely de-

termined column-wise by the solutions of A(xi) = ei, A’s

inverse X = A−1 = Y is unique and commutes with A, i.e.,

A−1A = AA−1.
Commuting matrices are a rare breed and this area is subject

of much abstract matrix research.
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Students should now look for commuting matrix pairs and non-

commuting ones.

The zero matrix On commutes with some (?) or all (?) matri-

ces An,n?

How about the identity matrix In?

Or polynomials in A?

Construct two by two matrix pairs that commute and that do

not commute.

Do A =

(

0 1
0 0

)

and B =

(

0 0
0 1

)

commute or not?

Try to construct 2 by 2 and 3 by 3 matrix pairs with no zero

entries that commute and some that do not commute?

These exercises are meant to practice and perfect matrix mul-

tiplication and to learn to reason mathematically.
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[ 3 ] Row Reduction and the LR factorization of Matrices

The LR factorization of a matrix An,n expresses A = L·R with

L =







1 0
. . .

∗ 1






lower triangular and R =







∗ ∗
. . .

0 ∗







upper triangular n by n.

Warning : Not all square matrices have an LR factorization.

Show that A =

(

0 1
1 0

)

cannot be LR factored. Why?

Assume that An,n can be row reduced to a RREF without the

need to switch rows in the process. Then our row reduction

algorithm uses two actions repeatedly: scale the current pivot

candidate to become 1 , and then subtract certain multiples of

the pivot row from lower rows so that all entries in the pivot

column below the nonzero pivot itself become zero.
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Scaling the ith pivot row can be effected by left multiplying the

row vector s = (0, ..., 0, si = 1/âi,i, 0, ..., 0) with the partially

reduced matrix Â on the right.

In matrix notation, the scaling matrix

S =























1
. . . 0

1
si

. . .

0 . . .

1























n,n

← i

effects the same scaling of row i and changes the ith pivot in

S · Â to 1 .
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Subsequent row reduction of the entries bj,i with j > i in col-

umn i of
ˆ̂
A = S · Â is achieved again by left matrix multipli-

cation of
ˆ̂
A with ↓ i

Ei =



















1 0
. . . 0
0 1 0
−bi+1,i 1

0
... 0 . . . 0
−bn,i 1



















n,n

← i

for i = 1, ..., n − 1 and bj,i denoting the entry of
ˆ̂
A in row j

and column i for j > i.

Note that the scaling matrices S and the elimination matrices

Ei all have zeros in their upper triangle above and to the right

of the diagonal. Such matrices are called lower triangular.
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Theorem : Matrix products of lower triangular n by n matri-

ces L and M remain lower triangular.

Proof : What is the dot product of row lj = (∗, .., ∗j, 0, ..., 0)

of L and column mk =



















0
...

0
∗k
...

∗



















of M when j < k and ly×mk

evaluates the (j, k) entry of L ·M in its upper triangle?

Can the students figure this out? How do the ∗ entries and the

zero entries in lj and mk, respectively, match up if j < k?

Theorem : The inverse of a lower triangular matrix L is lower

triangular if L can be inverted. Proof by students ... Hint: the

REF of L is lower triangular. 15



Combining all our insights that pertain to the row reduction of

square matrices A via lower triangular matrix multiplication

by M from the left, we understand that M transforms A to

M · A = R in upper triangular form.

Thus A = M−1R = LR where L = M−1 is lower triangular

as claimed in the LR factorization for matrices A that allow

such.
Historically, Heinz Rutishauser in 1957 was the first to pro-

pose matrix factorizations and reverse order multiplies in the

ill-fated LR matrix factorization when trying to find intrinsic

properties of matrices. This was quickly improved by John

Francis - who dropped out of Cambridge after the first year -

and by Vera Kublanovskaya in Leningrad around 1960. Both

used orthogonal matrix factorizations instead of LR and in-

vented the QR eigenvalue algorithm, our workhorse today.
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[ 4 ] Sets of Vectors, Vector Spaces, Spanning Sets, Bases,

and Subspaces Associated with Matrices

Here we study sets of k ≥ 1 vectors in ui ∈ Rn where k < n,

k = n or k > n.

The vectors {ui} and all their linear combinations ( also called

the span({ui}) ) form a subspace U of Rn.

If k = 1 and u1 ̸= 0, then span(u1) is the line through u1 and

the origin 0 of Rn.

If k = 2 and u1 = u2 = 0, then span({u1, u2}) consists of the

origin 0 ∈ Rn.

It is the line through u1 and the origin 0 if u1 = αu2 ̸= 0 ∈ Rn.

span({u1, u2}) is the plane spanned by 0, u1 and u2 if u1 and

u2 are both nonzero and do not lie on a line through 0.
17



Elementary geometry does not help us much further here, we

need to use matrix theory to sort vector spans and vector spaces

out.

For any set of k vectors {ui} ⊂ Rn we now study the n by k

column vector matrix U =







...
...

u1 · · · uk
...

...







n,k

and its row

echelon form Rn,k instead.

For students, this is a different ’abstract’ matrix challenge

than ’theorems’ and ’proving’. We need to mentally visualize

what a REF of any matrix Un,k signifies, what its invariants

are; by whomever and however it was computed.

What are the invariants of the REF R of any specific matrix

U?
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The most significant information of a REF Rn,k are the num-

ber p of pivot columns and their position and complementarily,

the position and number f of free columns in Rn,k.

How many pivots pmax can Rn,k maximally have?

pmax = min(n, k).
How many free columns fmin can Rn,k minimally have?

fmin = k − p.

The minimal number pmin of pivots in a REF Rn,k is 0.

The maximal number of free columns fmax is fmax = min(n, k).

Thus 0 ≤ p ≤ min(n, k) and f = k−p because U ’s REF Rn,k

has k columns and each column is either pivot or free.

If p = 0, then the column vector matrix U = On,k and all

vectors ui are the zero vector. And their span is the singleton

vector {o} ∈ Rn which contains all of its linear combinations.
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Each free column associated vector ui can be expressed as a

linear combination of the preceding pivot associated vectors.

The pivot associated column vectors uj of U suffice to gen-

erate every vector in span({ui}). And each pivot associated

column vector is necessary to span their generated subspace.

Therefore the pivot associated vectors uj of U are a minimal

spanning set for span({ui}); no fewer will do and no more are

needed to reach each vector in span({ui}).

Definition : A minimal spanning set for a subspace U ⊂ Rn

is called a basis for U . The number of basis vectors for a sub-

space U ⊂ Rn is called its dimension, 0 ≤ dim(U) ≤ n.

Definition : Given an n by k matrix A, the set of vectors
{

b = Ax | x ∈ Rk
}

is called the image im(A) of A or the range

space of A.
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Definition : Given an n by k matrix A, the set of vectors
{

x ∈ Rk | Ax = 0 ∈ Rn
}

is called the nullspace null(A) of A
or the kernel of A.

Theorem : Given an n by k matrix A, the dimensions of

im(A) and null(A) add up to the number of columns k of An,k,

i.e.,

dim (im(A)) + dim (null(A)) = k .

This should become quickly obvious to students:

what are the dimensions of the image space and of the nullspace

of A as indicated by the pivot columns and free columns in A’s

REF.

And an open question for teacher and students:

How can we find a basis for the nullspace of a matrix from its

REF? How to solve Ax = 0?
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[ 5 ] Linear (In-)dependence of Vectors

The logic based definition of linear independence for a set of

vectors that is given in one form or another in every classical

abstract Linear Algebra class reads as follows :

Classical abstract Definition : A set of vectors ui is linearly

independent if every linear combination of the ui that equals

the zero vector has zero coefficients.

Then students in an abstract Linear Algebra course are usu-

ally given several sets of vectors in Rn and asked to reason

and decide which sets are linearly independent and which not.

How would a matrix based class approach this problem?

A linear combination of vectors ui is the matrix× vector prod-

uct of the column vector matrix U and the coefficient vector x.

When is U · x = 0?
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U · x = 0 whenever x ∈ null(U). When is null(U) = 0?

This happens when the Ref of U has only pivot columns and

no free variables. Thus we have :

Matrix Theory based Definition of Linear Independence :

A set of vectors ui is linearly independent if the REF of the

column vector matrix U has as many pivots as the number

of vectors ui.
Now add some simple ’classical’ homework problems ...

(1) If o ∈ {ui} then the ui are linearly ...

(2) If u1 − 4u3 ∈ {ui} then the ui are linearly ...

(3) , (4), ...

Classical abstract Definition of Linear Dependence :

A set of vectors ui is linearly dependent if one of the vectors

uj is a linear combination of the others.
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From Matrix Theory we now know that a set of vectors {ui}
is linearly dependent if the REF of the column vector matrix

U of the ui has a free variable. And we are done; in theory.

Numerically :

As before, here are the steps to let software find bases for the

nullspace and the image space of a set of vectors {ui} and

i = 1, ..,m that are arranged column-wise in the matrix Un,m.

For finding a basis for the image space of U , transpose U , i.e.,

write the vectors ui row-wise and form UT
m,n, the transpose of

U and compute the RREF of UT .

The RREF’s pivot rows, transposed, are a basis of im(U ).

To find a basis of the nullspace of U solve U.’\zeros(m,n)
in Matlab.
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Early Midterm Test

What are the invariants of a REF of a matrix ?

Assume that an instructor asks her/his 214 or more or fewer

students to row reduce a given matrix Am,n to row echelon

form Rm,n in whatever sequence of operations on A they choose.

What will be common and the same in all 214 handed in tests?

The ’invariants’.

What in the REFs can differ?
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Next, Lesson Plan 4 will deal with matrix representations with

respect to arbitrary bases, extending the standard matrix rep-

resentation idea to allow and account for the intrinsic proper-

ties of each specific matrix such as its eigenvectors, eigenval-

ues and eigenspaces.

Lesson 4 will be the turning point from simple linear prop-

erties in the behavior of matrices and the REF to nonlinear

properties, actions and classifications of matrices.

Matrix eigenvectors and eigenvalues will then be introduced

and found via Krylov subspaces and vector iteration in subse-

quent lessons 5 through 7.
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