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Lesson Plan 2 deals with systems of linear equations and introduces row reduction to find

pivots and free columns for a matrix that represents a linear problem. Row reduction is

practiced at first by hand and using pencil on paper in order to learn this essential linear

algebraic process deeply. For teachers we explain a simple way to create integer model

problems that can be row reduced and solved with integer arithmetic. Once the reduction

process is well understood and practiced, row reduction is dealt with through computer

software and the computed results are interpreted.
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Page ii above lists the concepts and definitions of ancient meth-

ods to solve Systems of Linear Equations.

Done by hand on pencil and paper, this is a very tedious and er-

ror prone process, that will re-occur throughout all our Lessons

and it must be understood deeply by our students to be able to

understand linear algebraic processes concretely.

Is is also good for students to learn to use software such as

Matlab’s rref.m function to verify their computations and

to use rrefmovie.m to see how it is done step by step.

But it is still mandatory that students learn how to proceed

with row reductions flawlessly themselves on paper.
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Goals :

Contents-wise :

Explore and understand mankind’s first matrix models : the 5,000 or 6,000 + years

old matrix model for systems of linear equations.

Learn to compute row-reductions of matrices as first introduced in Babylonian

times many millennia ago in the fertile plains of the Euphrates and Tigris rivers in

today’s Iraq.

Cuneiform tablet (from Yale U) with Babylonian methods for solving a system of

two linear equations.
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Pedagogy-wise :

Teach students the ubiquitous duality of Linear Algebra and Matrix Theory:

First we need to abstract a ’verbally given’ set of equations that measure tangible

real world quantities and transform these equations into a matrix model that carries

nothing but numbers,

then perform concrete computing steps to find the linear system’s solution and

finally reinterpret the computed result in real world terms again.

Here we need to emphasize and practice the rigorous, mechanical process of ’row-

reduction’.

This process is fundamental to Linear Algebra and Matrix Theory.

It is very computer like, tedious and challenging in its ’one way’ approach :

to do it right and do not mess up.
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We start with a classical model that may actually be explained

(in Cunei-script) on the Yale Museum clay block:

Story : A child buys 2 apples and 3 oranges one day for 15

silverlings. It comes back the next day and returns one of the

apples because it is rotten and instead it buys two more or-

anges, paying 3 silverlings in this exchange.

What is the price of one apple and of one orange?

Setup : First we need to construct model equations for these

transactions.

On the first day, the price of 2 apples and 3 oranges is 15 sil-

verings or

2x+ 3y = 15s (1)

where x is the price of one apple and y is that of one orange.
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On the second day the refund for 1 apple and buying 2 oranges

instead required 3 silverings in pay or

−x+ 2y = 3s . (2)

Data matrix : x apples y oranges silverlings

day 1 2 3 = 15

day 2 – 1 2 = 3

How can we transform this data matrix and formulas (1) and

(2) into a matrix × vector equation?

On each day the child bought x apples and y oranges, so the

’produce vector’ is

(

x
y

)

and the silverlings vector is

(

15
3

)

.

And
(

2x+ 5y
−x+ 2y

)

=

(

2
−1

)

x+

(

3
2

)

y =

(

15
3

)

. (3)
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Recall that multiplying Am,n by an n-vector x on the right cre-

ates a linear combination of the column vectors in A.

Using duality and reading Am,n·x =







...
...

c1 · · · cn
...

...

















x1
x2
...

xn











=







...

c1
...






x1+







...

c2
...






x2+ ...+







...

cn
...






xn backwards gave

us formula (3) in matrix × vector form as
(

2
−1

)

x+

(

3
2

)

y =

(

2 3
−1 2

)

·

(

x
y

)

=

(

15
3

)

. (3)

With A2,2 =

(

2 3
−1 2

)

, x̃ =

(

x

y

)

and b =

(

15
3

)

, our

linear equation model now has the standard form A · x̃ = b .
5



How can we solve an equation in the form A ·x = b for a com-

patible set of a matrix Am,n, a vector x ∈ Rn, and b ∈ Rm?

How did the Babylonians solve systems of linear equations?

What operations on sets of equations are legal to perform with-

out affecting their solution x?

(A) We can add and subtract multiples of one equation to or

from another.

(B) We can change the order of the equations and reshuffle

them at will.

(C) We can multiply both sides of any equation by a non-zero

factor.

And the solution(s) will stay the same.

Row reduction of augmented matrices (A|b)m,n+1 using these

operations were one method in Babylon to solve linear sys-

tems Ax = b. We shall do the same.
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To solve Ax = b we assemble the data in Am,n and b ∈ Rm :
Am,n b

a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2

...
...

...
...

am,1 am,2 · · · am,n bm

Next we append the data matrix by an ’operations’ column on

the right where we will detail the row operations that zero out

certain column entries.
Am,n b row operations

a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2

...
...

...
...

am,1 am,2 · · · am,n bm
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The aim of row reduction is to zero out the lower triangle of

the matrix Am,n. If a1,1 is non-zero, we can use it as a pivot

to zero out the lower placed entries of column 1 by subtract-

ing proper multiples of row 1 from the lower rows 2, ...,m in

(A|b).
Am,n b row operations

a1,1 a1,2 · · · a1,n b1 ( if a1,1 ̸= 0 )

a2,1 a2,2 · · · a2,n b2 - a2,1 / a1,1 · row 1
...

...
...

...
...

am,1 am,2 · · · am,n bm - am,1 / a1,1 · row 1

Recall the zero rule of mathematics :

(ZERO rule) One must not divide by zero; ever !

When performing row operations on the augmented matrix

(A|b) we have to update the entries below and to the right

of the pivot, including those in b.
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Zeroing of the entries in column 1 below the pivot gives us the

updated (Ã|b̃) data on the left of the vertical double || line :

Am,n b row operations

a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2 - a2,1/a1,1 · row 1

...
...

...
...

...

am,1 am,2 · · · am,n bm - am,1/a1,1 · row 1

a1,1 a1,2 · · · a1,n b1
0 ã2,2 · · · ã2,n b̃2 ( if ã2,2 ̸= 0 )

0 ã3,2 · · · ã3,n b̃3 - ã3,2 / ã2,2 · updated row 2
...

...
...

...
...

0 ã2,2 · · · ãm,n b̃m - ãm,2 / ã2,2 · updated row 2

and so forth with â3,3 updating rows 4 to min(m− 1, n)

and continuing until column number min(m− 1, n) is reached.
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This process is called row reduction and its final upper trian-

gular matrix is row echelon form of the original augmented

matrix (A|b).

What can we do if a designated pivot spot aj,k is zero when

trying to eliminate the entries in column k below row j?

[ Remember : the row index j in aj,k precedes the column in-

dex k; always row before column. ]

Thus far we have not used rule (B) to swap rows or equations

that does not affect the solution of a system of linear equa-

tions.

If there is a non-zero entry ai,k in column k with row index

i > j when aj,k = 0, interchange rows i and j and eliminate

all entries of the updated augmented matrix (Ã|b̃) in column k
below row j.
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If all entries in columns k below row j are zero, move to the

next column k + 1 and try to move a non-zero pivot into posi-

tion j, k + 1. If impossible, move to the right to column k + 2
and so on and on.

We want to solve sets of linear equations Am,nx = b from a

row echelon form (Ã | b̃) of the augmented matrix (A|b)m,n+1.

Here is a generic row echelon form for a 5 by 7 matrix A and a

right-hand side b in 5-space that ’boxes’ the pivots and labels

every entry with a 0 or a ∗ if non-zero.

(Ã | b̃) =















* ∗ ∗ ∗ ∗ ∗ 0 | ∗

0 * ∗ ∗ ∗ ∗ ∗ | ∗

0 0 0 * 0 ∗ ∗ | 0

0 0 0 0 * 0 ∗ | ∗
0 0 0 0 0 0 0 | ∗















(5)
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Clearly the solution x of Ax = b and Ãx = b̃ coincide since

row additions and row scaling or interchanges do not affect the

solution of a linear system. Is (5) solvable and how is it done?

Let us investigate the leading 3 by 3 block of the symbolic row

echelon form in (5) as if it were the row echelon form of a 3 by

2 matrix B and a right hand side c in the linear system By = c

(B̃ | c̃) =





* ∗ | ∗

0 * | ∗
0 0 | 0



 . (6)

Here the unknown solution y has two components. Why?

Under what circumstances can this system be solved?

Is the solution unique or are there multiple solutions?

Clearly the second row in (6) determines y2 uniquely, while

the first row does so for y1, whatever the values of ∗ are.
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Note that boxed pivots * are always assumed to be non-zero.

Next take the leading 3 by 4 block of (5) to describe the row

echelon form of a system matrix C3,3 and the right-hand side

vector d ∈ R3 in

(C̃ | d̃) =





* ∗ ∗ | ∗

0 * ∗ | ∗

0 0 0 | ∗0



 . (7)

Here the unknown solution z has three components.

Under what circumstances can this system be solved?

Solved uniquely?

The system cannot be solved at all if the last entry ∗0 of d̃ is

nonzero since y1 · 0 + y2 · 0 + y3 · 0 (= 0) cannot be non-zero.

For any value assigned to z3, the system with d̃3 = 0, however,

can be solved and there are infinitely many solutions here.
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We are free to choose z3 arbitrarily and then solve for z2 and

z1 in turn.

Finally we consider the leading 4 by 5 block of (5) and de-

scribe the row echelon form of a system matrix D4,5 with right-

hand side vector g ∈ R4 in

(D̃ | g̃) =











* ∗ ∗ ∗ ∗ | ∗

0 * ∗ ∗ ∗ | ∗

0 0 0 * 0 | ∗

0 0 0 0 * | 0











. (8)

Here the unknown w has five components.

Under what circumstances can this system be solved?

Solved uniquely?

The system can always be solved.
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For any value assigned to g3, the system can be solved and

there are infinitely many solutions here since the third compo-

nent of the solution can be chosen arbtrarily.

How about the row exchelon form of (A, b) in equation (5)?

(Ã | b̃) =















* ∗ ∗ ∗ ∗ ∗ 0 | ∗

0 * ∗ ∗ ∗ ∗ ∗ | ∗

0 0 0 * 0 ∗ ∗ | 0

0 0 0 0 * 0 ∗ | ∗

0 0 0 0 0 0 0 | ∗0















(5)

How many components does the the unknown solution x of

Ax = b have?

Under what circumstances can this system be solved?

Solved uniquely?
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Student answers please, ...

A historical aside :

Our original ’child buying fruit’ model

2x+ 3y = 15s (1)

−x+ 2y = 3s (2)

can be interpreted geometrically (for s = 1 unit) as a set of two line equations in x and y

whose intersection we want to find.

Equation (1) has the slope-intercept formula y = −2/3 x+5 while equation (2) becomes

y = 1/2 x+ 3/2.

Question for students : For which right hand sides of payment data are the respective

apple and orange prices realistic, i.e., positive for both fruits?

Graphical solutions to linear equations were discussed on Babylonian Cuneiforms as well

as the Gaussian row reduction method. For linear systems beyond dimension n = 2, row

reduction is more practical than trying to find, e.g., plane intersections when n = 3.

16



Determining land boundary lines accurately when the spring floods receded around Baby-

lon has given humankind linear equations, row reduction and the thought of matrix com-

putations 6,000 + years ago. These ideas then traveled to Egypt and the Nile delta and on.

Next some ”Questionable Statements” :

(1) All columns of a row echelon form of an augmented matrix

(A|b) either have a pivot or the associated solution set has

a free variable.

True or false? Which columns are pivot columns, which are

free variable columns in formulas (5) through (8)?

17



(2) Only those linear systems are solvable whose row echelon

form’s right-hand side has a nonzero entry below the low-

est reduced matrix row with a pivot.

True, sometimes true or always false? Explain please.

(3) Is the row echelon form of an augmented matrix (A|b)
unique or can there be multiple such row reduction results?

How many? Discuss, please.

The row reduced matrix Ã of Am,n =







· · · r1 · · ·
...

· · · rm · · ·







m,n

is achieved by adding or subtracting rows ri of A, by scaling

them and maybe by changing their order.
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Therefore the rows r̃i in the row echelon form Ã of A are linear

combinations of the rows r1, ..., rm in the original A, maybe

with rows r̃i interchanged.

Conceptually thinking backwards, the non-zero rows in Ã should

be able to recreate the original rows ri of A by judicious linear

combinations and conversely, the set of all linear combinations

of the row vectors ri should be identical to the set of all possi-

ble linear combinations of the non-zero or pivot rows in Ã.

We shall study this dual concept in more detail later

Regarding the column vectors in Am,n =







...
...

c1 · · · cn
...

...






and

the columns in its row reduced form Ã is more complicated.
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The original columns in A in the position of the pivots in A’s

row echelon form Ã suffice to express all linear combinations

of the n columns ci of A.

For example for A5,7 in formula (5), the four pivots in Ã indi-

cate four columns c1, c2, c4, c5 in A can be used to express all

linear combination of the seven columns of A.

All this will become clearer in our next Lesson on subsets of

vectors, spanning sets and minimal spanning set of vectors and

matrix inversion.
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This section’s task is to play loosely with row reductions. Students must learn and repeat-

edly practice the rigorous way to delete or zero entries in an updated column below the

pivot and how to deal with columns that do not have a pivot where desired, i.e., deal with

free columns and still proceed to a row echelon form R of any rectangular matrix Am,n

or of any augmented matrix (A|b).

Here we also treat systems of linear equations intuitively when looking at applications of

row echelon form reductions. In the future we will have to fathom what a row echelon

form or a row reduction can do for us as regards subspaces and their generating (still

undefined and unnamed) ’bases’.

But instructors need to have access now to simple matrix examples whose row echelon

forms are easy to compute.

(1) Start from an integer upper staircase form Ãm,n that is indeed a genuine matrix row

echelon form with pivot columns and free columns.

(2) Now reverse the row reduction process by multiplying Ãm,n on the left by a small

entries integer matrix Bm,m. Then C = Bm,m · Ãm,n is an integer matrix that has the

same row and column dimensions m and n as Ãm,n. And one possible row echelon form

of C is Ã which can be easily computed over the integers.

This can generate dozens and dozens of good homework examples for row reductions that

cannot be guessed and that require genuine work to compute.

By hand with paper, pencil and eraser, and over the integers.
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Teacher’s Preparations start with an integer row echelon form:

R4,6 =









−1 2 3 −2 −1 −2
0 2 1 1 3 2
0 0 0 2 1 4
0 0 0 0 0 0









for example .

Why is R in row echelon form? Is any information (entries

and their row and column distribution) unique?

Next the teacher muddles this row echelon form up by replac-

ing the structured rows of R with integer linear combinations

of R’s rows by left multiplication R with a 4 by 4 matrix such

as

B =









2 0 −1 4
−1 1 −1 3
1 2 0 2
3 −1 2 1









. This results in the dense matrix
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S4,6 = B ·R =









−2 4 6 −6 −3 −8
1 0 −2 1 3 0
−1 6 5 0 5 2
−3 4 8 −3 −4 0









.

The Students’ Task then is to compute the (or a) row echelon

form of S using the row modifying scheme on p. 9 in con-

junction with the 3 legitimate rules (A), (B) and (C) of row

reduction.

Note that clearly the scheme of fractional row operations from

p. 9 is cumbersome. However if we scale each newly found

pivot row in S and its updates to have the pivot 1 by using

the legit scaling rule (B), then taking quotients becomes un-

necessary in the row operations and we can compute the row

echelon form of S entirely over the rationals Q. Therefore we

replace the top row of S by
(

1 −2 −3 3 1.5 4
)

.
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row reducing the dense S4,6 row operations

1 -2 -3 3 1.5 4 scaled beforehand

1 0 -2 1 3 0 −1 · row 1

-1 6 5 0 5 2 +1 · row 1

-3 4 8 -3 -4 0 +3 · row 1

1 -2 -3 3 1.5 4

0 2 1 -2 1.5 -4 scale row for pivot 1

0 4 2 3 6.5 6

0 -2 -1 6 0.5 12

1 -2 -3 3 1.5 4

0 1 0.5 -1 0.75 -2

0 4 2 3 6.5 6 −4 · row 2

0 -2 -1 6 0.5 12 +2 · row 2

(continued ..)
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updated S4,6 row operations

1 -2 -3 3 1.5 4

0 1 0.5 -1 0.75 -2

0 0 0 7 3.5 14 scale row 3 for pivot 1

0 0 0 4 2 8

1 -2 -3 3 1.5 4

0 1 0.5 -1 0.75 -2

0 0 0 1 0.5 2

0 0 0 4 2 8 −4 · row 4

1 -2 -3 3 1.5 4

0 1 0.5 -1 0.75 -2

0 0 0 1 0.5 2

0 0 0 0 0 0
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Is the final row-wise updated form of the originally dense ma-

trix S4,6 a row echelon form for S = B ·R? Explain.

What are the differences between R and S, with S = B · R
as originally given, and in the row echelon forms R and row

reduced S?

How many row echelon forms can any rectangular matrix have?

How many pivots can any row echelon form of the same dense

matrix have? Different numbers? In different positions?

How many free variable columns must a row echelon form of

a matrix Am,n have when m ̸= n, m = n, m > n, or m < n?

Why? Why? Discuss all these questions, in class and privately.

Practice row reduction until flawlessly done every time.
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Row reduction of matrices and solving systems of linear equa-

tions is one of the easiest and best understood tasks in Numer-

ical Linear Algebra that is easily delegated to software.

Students can check their pencil and paper REF calculations by

using Matlab’s rref.m row echelon form finder, or if want-

ing to see the row reduction steps step by step, there is the

rrefmovie.m m-file in Matlab that will do just that.

We encourage students in beginning Linear Algebra classes to

familiarize themselves with software such as Matlab, Mathe-

matica, Python or ... – all the while perfecting their personal

mental acuity and pencil and paper skills with hand computa-

tions.
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If there are discrepancies between the computer output and

the paper and pencil result, students and teachers must study

how many different row echelon forms exist for any problem

and how to correctly decide whether two different row echelon

forms are in fact equivalent or not.

Outlook : What comes next?

In Lesson Plan 3 we will deal with linear or vector spaces that

are defined as vector spans or the range, or the nullspace of

a matrix. We will introduce the concepts of linear (in-)depen-

dence of vectors in terms of matrix row echelon form reduc-

tions and pivot or free column counts there.
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Then we study the composition of linear transformations in

terms of matrix multiplication. For square matrices we shall

find matrix inverses if they exist and rebrand the row reduction

process as an LR matrix factorization.

All this will help us with extracting the very essence of linear

transformations, aka matrices, in terms of their eigenvalues

and eigenvectors in Lesson Plans 4, 5 and beyond.
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