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This Introduction sets up our path into elementary Linear Algebra and Matrix Theory.

Starting with vectors and matrices, their interactions and studying linear combinations

and the dot product of vectors, we arrive at Linear Transformations. These are defined ab-

stractly via the parallelogram law and then equivalently as matrix times vector products.

This equivalence is explicitly proved by using the Riesz Representation Theorem. Same

dimensioned vectors and compatibly sized matrices can be added and scalar multiplied

and with the Standard Matrix Representation of Linear Transforms, the game is on.
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Linear Algebra ↔ Matrix Theory

Concepts, Notions and Definitions in Lesson Plan 1

Vectors
in R

n or Cn

Matrices (rows before columns)
Vector Algebra, Matrix Algebra

Linear Transformations
Dot Product of vectors

Linear Combinations of vectors
Unit Vectors ei

Standard Basis {ei}
Standard Matrix Representation of linear

transforms
Matrix × Vector Product

Linear Algebra ↔ or ≡ Matrix Theory ?
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The previous page lists a few fundamental concepts and defini-

tions for an introductory modern Matrix Theory college course.

Not all of these notions and ’words’ can become instantly fa-

miliar to our students, but they will re-occur and re-occur here

and there.

And it would be great if teachers would just revisit

them when need be and they arise again.
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Our Goals :

Contents-wise :

We introduce n-vectors and m by n matrices lightly; study their in-

teraction in light of linear transformations; introduce unit vectors,

the vector dot-product, component functions, Riesz Theorem and the

standard matrix representation Am,n of linear maps from R
n to R

m.

We formally prove that linear transformations and standard matrix

representations are equivalent and Riesz’s Representation Theorem.

We explain the first two formal (and simple) proofs of the course

slowly and deliberately. There will be many student question as to

why, how , ... here. Practice !

Pedagogy-wise :

We aim to engage the students and with the students on day 1;

to ask questions and accept their answers, to discuss them and guide

them;

to ask for examples and simple computations in class and

to deal with misunderstandings in a respectful, open, even a ’loving’

(’That’s ok ...’) way.
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Try to elicit student answers to student questions

(’How could you, would you explain this to another student down

your hall residence...?’).

We build the course on student input, be they understandings or mis-

understandings.

And we share our knowledge freely and openly and do not ever rush

through the syllabus.
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A Lesson Plan for the first Class Meeting(s)

“Linear Algebra” and “Matrix Theory”

Linear Algebra deals with vector spaces in the

abstract, while

Matrix Theory deals with vector spaces
concretely.
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This is how I would start the first class meeting of a first Linear Algebra class :

“Welcome to your first class on Linear Algebra and Matrices.

Here we will study many concepts and methods that may be new for you, so please bear

with me if and when not every notion is completely clear at its first mention; talk with your

seat neighbor(s), ..., and we will go over these many times. In a few weeks weeks you will

become experts, too.

Welcome and let me begin with some words of explanation.”

Abstract Linear Algebra is popular as a first introduction into Algebra.

Here we could introduce finite dimensional vector spaces through 11 ax-

ioms for vector addition, scalar vector multiplication and their distributive

properties linking vector addition and scalar vector stretching.

And then study linear transformations and the structure of sets of vectors.

We would argue through several notions for linear vector (in)dependence

when we study bases and subspaces and learn how to construct indirect

proofs and proofs by induction.

Such an approach would introduce students into mathematicians’ lingo and

prepare them to think like (abstract) mathematicians.
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This is a worthy endeavor and worth the effort for maths, science and en-

gineering majors.

Matrix Theory instead deals with finite dimensional vector spaces and lin-

ear transformations concretely.

A matrix is a rectangular array of numbers, real or complex. This array

interacts with vectors as any linear transformation does, but concretely by

matrix × vector multiplication.

Sets of vectors, their linear (in)dependence and possible basis structure can

be read off the row echelon form of their column vector matrix as we will

see in Lesson Plan 2.

Likewise, the ranges and nullspaces of linear transformations are displayed

by the row echelon form of their standard matrix representation.

Eigenvalues and eigenvectors of linear transformations are best computed

by matrix eigensolving software.
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Our first immediate task, however, is to link Linear Algebra and Matrix

Theory through the standard matrix representation of linear transforma-

tions.

The basic notions and tools are vectors and their accumulation in rectan-

gular or square matrices, as well as the algebra behind the interaction of

vectors and matrices.

The preceding two pages are directed mostly to instructors.
But they could serve as a reminder to students of the subjects
that this set of Lessons has addressed when the semester ends
and exams loom.

Now is also a good place to just stop, contemplate and let stu-
dents and things settle, maybe scroll back and mention that all
of these ’new words’ will become ’household items’ quickly;

if students just relax and watch how vectors and matrices and
related notions are introduced and handled.
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Now the technical part of the course begins concretely.

Vectors contain a number of entries that may be real numbers, complex

numbers, named variables; such as the column vector

x =



















2.35
π

5
√
−1

x4

−70
x6

−19 · s



















or the row vector y =
(

1,−2, 3i, 22, t3, 6
)

.

x with seven entries lies in 7-dimensional space, y belongs to a 6-dimensional

space.

Now students might want to think up some examples of vectors and of non-vectors; play

with them: try to add them, multiply them, stretch them by a scalar factor, reverse their

direction, find the zero vector ... . Let everyone have fun and the students get chalk on

their hands!
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To create a matrix we bunch equally dimensioned vectors together, stacking

column vectors left to right and row vectors top to bottom:

If u =
(

2.2 −4 56 2
√
7
)

and v =
(

2 0 17 −88i
)

are two 4-

dimensional row vectors, then

A =

(

· · · u · · ·
· · · v · · ·

)

=

(

2.2 −4 56 2
√
7

2 0 17 −88i

)

is a 2 by 4 matrix.

Often we write a matrix B with its column and row numbers subscripted

as Bm,n. Thus A = A2,4 above.

Always remember “rows before columns”, or the number m of rows of a

matrix B precedes the number n of columns in double subscript notation

Bm,n.
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With m = 2 and n = 4 for A above we have Am,n = A2,4. Note that

neither x7,1 nor y1,6 from two pages back can appear in a matrix that has

either u1,6 or v1,6 as a row or column since the vector dimensions (rows

before column indices) do not conform.

To study and comprehend vector spaces and their linear transformations

and their structures is the task of abstract Linear Algebra.

Matrix Theory instead studies the concrete effects of matrices when they

map vectors from one space to itself or to another.

Let this distinction set in.

Then ask and listen to the students’ future uses of Linear Algebra and/or of

Matrix Theory ...
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We have to answer two questions now:

Question 1: What are linear transformations of vector spaces?

Question 2: How do matrices map vectors, concretely and practically?

DEFINITION

A function f between two vector spaces U and V is a linear transformation

if

f(αx+ βy) = αf(x) + βf(y) (∗)
for all vectors x, y ∈ U and all scalars α and β.

In equation (∗) the expression αx+βy is the diagonal of the parallelogram

with sides αx and βy.
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Figure 1

In equation (∗), the right hand expression αf(x) + βf(y) is the diagonal

of the parallelogram in the range space with sides αf(x) and βf(y).

Linear functions preserve the parallelogram law between their domain and

range spaces.

Think of f as a delivery service that sends α items x and β items y in one

package or it sends α packages with x inside and β packages with y inside.

The effect will be the same if f is linear. never mind the extra packaging

material ...
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Any two real or complex entry vectors x = (xi) and y = (yi) in n-space

can be added by adding their components become x+ y = (xi + yi)n.

Likewise vectors can be multiplied by any scalar α to become αx = (αxi)n.

This describes the linear algebraic vector structure of n-space.

Likewise compatibly sized real or complex matrices Am,n = (ai,j) and

Bm,n = (bi,j) are added entry by entry to become A+B = (ai,j + bi,j)m,n.

Single matrices Am,n are multiplied by scalars to become λA = (λai,j)m,n.

Thus matrices of size m by n also have a linear algebraic structure.

Both commonly sized vector and matrices are closed under addition and

scalar multiplication.
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Our final tool is the dot product of n-vectors x = (xi)n and y = (yi)n.

The dot product of two same n-dimensional vectors x and y is the scalar

x · y =
∑n

i=1
xiyi.

This may be the end of the very first hour of Linear Algebra class.

Now is the time to play with vectors and matrices. Form matrices by stack-

ing equal dimensioned row vectors horizontally or equal dimensioned col-

umn vectors vertically.

It may also be advisable to introduce the class to Matlab or Python or other

matrix capable software now and learn how to set up vectors and matrices

inside the chosen software.

How to create a random entry matrix A4,4, and then the block matrix B8,8

that contains 7·A in its (1, 1) block, −A in its (1, 2) block, −2·A+5·eye(n)
in its (2, 1) block for the identity matrix eye(4), as well as the zero matrix

zeros(4, 4) in its (2, 2) diagonal block.

Maybe set up a computer help session or two with the TAs or yourself some

afternoon in a campus computer lab and let students and you have fun and

games ...
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For simplicity, we will assume from now on and for a while that our vector

spaces and matrices are all formed over the reals.

[ Complex numbers only occur in the second half of the course

when we study eigenvalues and eigenvectors of matrices. ]

Any function f that maps Rn into R
m is comprised of m individual com-

ponent functions fj that each map R
n into R.

Students should contemplate this fact for a while until comfortable with

this component decomposition.

We will now study linear functions f : Rn → R
m more closely.

Indeed, we want to understand the following fact and prove it.

(1) If f : Rn 7→ R
m is linear, then each of its m component functions fi is

linear.
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Proof :

We have f(αx+ βy) =







...

fj(αx+ βy)
...






and

αf(x) + βf(y) = α







...

fj(x)
...






+ β







...

fj(y)
...







=







...

αfj(x) + βfj(y)
...






,

when expressed for the ith component function fj of f .

Assuming that f is linear, both left hand sides are equal.

And therefore the top and bottom right hand sides are also equal so that

any component function fj of f must be linear, too.
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Now for the converse.

(2) If each component function fj : R
n 7→ R of a function f : Rn 7→ R

m is

linear, then f is linear.

Proof :

f(αx+ βy) =







...

fj(αx+ βy)
...






=







...

αfj(x) + βfj(y)
...







=







...

αfj(x)
...






+







...

βfj(y)
...







= α







...

fj(x)
...






+ β







...

fj(y)
...






= αf(x) + βf(y)

for each 1 ≤ j ≤ m and f is linear.

14



Compatible n-vector sums of the kind αu+ βv+ γw+ ... are called linear

combinations of the vectors u, v, w, ... with scalars α, β, γ, ... .

Each n-vector x = (xi)n can be written as the linear combination of the

standard unit vectors ei ∈ R
n.

Here each standard unit vectors ei has n− 1 zero entries and a single entry

of 1 in position 1 ≤ i ≤ n.

Thus x = (xi)n = x1e1 + ...+ xnen.

And due to the linearity of component functions fj : Rn → R of linear

functions f we have

fj(x) = x1fj(e1) + ...+ xnfj(en) = x · (fj(e1), ..., fj(en)) ∈ R.

Hence all linear component functions fj of a linear transformation f act as

the dot product of the variable vector x and the constant vector

(fj(e1), ..., fj(en)) that defines fj : R
n → R.
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This is Riesz’s Representation Theorem in functional analysis for infinite

dimensional spaces, developed here for finite dimensions n.

In finite dimensions it helps us to understand matrix multiplications and

matrix × vector mappings.

How do we incorporate Riesz’s Theorem into concrete matrix theory and

matrix operations?

We stack the defining vectors (fi(e1), ..., fi(en))n of each component func-

tion fi of a linear function f : Rm → R
n in an m,n matrix

A =





f1(e1) ... f1(en)
...

...

fm(e1) ... fm(en)



 =







... ...
...

f(e1) ... f(en)
... ...

...







m,n

.
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Am,n is called the standard matrix representation of the linear transforma-

tion f : Rn → R
m.

A =





f1(e1) ... f1(en)
...

...

fm(e1) ... fm(en)



 =







... ...
...

f(e1) ... f(en)
... ...

...







m,n

.

The standard matrix representation A contains the images







...

f(ei)
...






of

the standard unit vectors ei ∈ R
n under f in its n columns and - alternately

- the defining vectors
(

fj(e1) · · · fj(en)
)

of each component function

fj of f in its m rows.

Recall: ’rows before columns’.
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How to mate the standard matrix representations Am,n of a linear transfor-

mation f : Rn → R
m with a vector x ∈ R

n to evaluate f(x) = A · x?

To evaluate the necessary dot products of (fj(e1), ..., fj(en))n and x ∈ R
n

by using Am,n, we write x as a column vector, place it to A’s right and

evaluate Ax (= f(x)) as

Ax =





f1(e1) ... f1(en)
...

...

fm(e1) ... fm(en)





m,n





x1

...

xn





n

=

















...

(

fj(e1) ... fj(en)
)

·





x1

...

xn





...

















m

as m repeated matrix row × column vector dot products.
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Thus we have achieved a concrete way to express general linear transfor-

mations between finite dimensional vector spaces by using matrix × vector

products.

The Linear Transformation Theorem

Every linear transformation f : Rn 7→ R
m can be expressed as a con-

stant matrix A × vector product Am,n xn.

This establishes the equivalence of classical finite dimensional Linear Al-

gebra and Matrix Theory.

Matrix Theory is concrete and codeable. It can answer and solve all ques-

tions of abstract Linear Algebra.

Matrix Theory is modern and the language for computing.

It, rather than abstract reasoning, is used in all applications nowadays.

And that we shall teach.
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This ends the introductory first lesson plan that covers 2 or 3 class hours of

fundamentals in Linear Algebra and in the concrete matrix/vector setting.

Some ideas for homework (and classwork on the next class day):

Think of a matrix Am,n as a stack of n column vectors as one would stack

books | on a shelf, left to right | | | ....

What does the matrix × vector product A · x do with the columns







...

ci
...







in A?

Am,n · x =







... · · · ...

c1 cn
... · · · ...















x1

x2

...

xn









= x1







...

c1
...






+ x2







...

c2
...






+ ...

...+ xn







...

cn
...






.

Hint: multiplying Am,n by an n-vector x on the right creates a linear com-

bination of the column vectors in A.
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How would the students multiply an m by n matrix Am,n by an m-vector y
from the left?

[ What should y · Am,n =
(

y1 · · · ym
)





· · · r1 · · ·
...

· · · rm · · ·



 mean? ]

A row stack ...

Ask students to create matrices and vectors in either column or row form
and try to multiply them in class. Some products will work and others will
fail.

Why, and how is that recognized?

Our first lesson on linear transformations and matrix times vector multipli-
cations might take two to four actual class hours and this leads us simple
but tedious applications in the second lesson.
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The second lesson plan will again contain outlines for 2 to 4 class sessions.

Sometimes full of concrete number crunching, sometimes dealing with abstractions and a

few small proofs, too.

The subjects of Lesson Plan 2 are :

row reduction of rectangular matrices to row echelon form,

interpreting row reduced forms in terms of spanning sets of matrix columns or rows,

minimal spanning sets or bases for vector subspaces, and

to learn how to solve solve systems of linear equations via row reduction.

The second lesson plan will take a class to near the halfway point of a modern first Linear

Algebra and Matrix Theory course.

22


