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Premise

I Tensors are fundamental objects in linear algebra, which
appear in various branches of maths and science.

I Tensors are both easier and more difficult than you think.
I Students sometimes first encounter tensors through

physics or differential geometry.
I There are some interesting accessible motivations for

studying tensors from a linear algebraic standpoint.

Tensors: They’re not just for Physics!



Notation

Throughout this talk:
I F denotes a field;
I V denotes an F -vector space of (usually) finite dimension

n.
I B = {e1, . . . ,en} denotes a basis for V over F .



Matrices, Linear Maps, and Bilinear Forms

We usually see the following basic facts in introductory linear
algebra courses:
I Every linear map t from V to itself can be represented

uniquely as a matrix, that we will denote by T with entries
Tij :

t(ej) =
∑

i

Tijei .

I Every bilinear form b from V × V to F can be represented
uniquely as a matrix, that we will denote by B with entries
Bij :

b(ei ,ej) = Bij .



Tensors, Multilinear Maps, and Multilinear Forms

It is not a big leap to show the following:
I Every bilinear map t from V × V to V can be represented

uniquely as a 3-dimensional array of field elements, that
we will denote by T with entries Tijk :

t(ej ,ek ) =
∑

i

Tijkei .

I Every trilinear form b from V × V × V to F can be
represented uniquely as a 3-dimensional array of field
elements, that we will denote by B with entries Bijk :

b(ei ,ej ,ek ) = Bijk .



Tensors as Multidimensional Arrays

We can write a three-dimensional array as a sequence of
matrices, for example [[

1 0
0 1

]
,

[
0 −1
1 0

]]

We call these matrices the slices of the tensor.

The space of all trilinear forms has dimension n3.



Pure Tensors, Rank, and Group Actions

Let V⊗2 = V ⊗ V denote the F -vector space spanned by
elements ei ⊗ ej , with the rule that

u ⊗ (v + λv ′) = u ⊗ v + λu ⊗ v ′

(u + λu′)⊗ v = u ⊗ v + λu′ ⊗ v

for all u, v ,u′, v ′ ∈ V , and all λ ∈ F .

Via the correspondence u ⊗ v ↔ uv t , where we view elements
of V as column vectors with coordinates with respect to the
basis B, we see that two-fold tensors of the form u ⊗ v
correspond to rank-one matrices.

The linear map defined by u ⊗ v is the map x 7→ u∗(x)y .

The bilinear form defined by u ⊗ v is the map
(x , y) 7→ u∗(x)v∗(y); a product of linear forms.



Pure Tensors, Rank, and Group Actions

More generally, the space V⊗k has dimension nk , with basis
elements ei1 ⊗ ei2 ⊗ · · · ⊗ eik .

Tensors of the form u1 ⊗ u2 ⊗ · · · ⊗ uk are called pure,
fundamental, or rank-one tensors.

Every tensor is a sum of pure tensors; the fewest pure tensors
required to generate a tensor is called its rank; in the matrix
case this corresponds precisely to the usual rank of a matrix;
this can be an interesting exercise.

For a tensor product of more than two spaces, it is extremely
difficult to calculate the rank, or even to know what the
maximum possible rank is.



Pure Tensors, Rank, and Group Actions

A rank-one matrix can be recognised by noting that its rows are
all scalar multiples of each other.[

c
d

]
⊗
[
e
f

]
=

[
ce cf
de df

]

A rank-one tensor in V ⊗ V ⊗ V can be recognised by noting
that its slices are all scalar multiples of each other, and are all
rank one matrices.

[
a
b

]
⊗
[

c
d

]
⊗
[
e
f

]
=

[[
ace acf
ade adf

]
,

[
bce bcf
bde bdf

]]



Pure Tensors, Rank, and Group Actions

Consider W = V⊗k = V ⊗ · · · ⊗ V . Invertible linear maps are
elements of GL(W ) = GL(nk ,F ).

The group G = GL(V )× · · · ×GL(V ) acts naturally on W :

(g1, . . . ,gk ) : v1 ⊗ · · · ⊗ vk 7→ g1(v1)⊗ · · · ⊗ gk (vk ).

We can write g1 ⊗ · · · ⊗ gk for this map. If we identify F n ⊗ F n

with F n2
in a sensible way, then the matrix corresponding to

g1 ⊗ g2 is the Kronecker product of the matrices corresponding
to g1 and g2 respectively.

Such a map fixes the set of pure tensors, and preserves tensor
rank.

In the case k = 2, this corresponds to multiplying a matrix on
the left and right by an invertible matrix.



Algebras and Linear Maps

I An algebra can be viewed as a subalgebra of a matrix
algebra via its regular representation.

I This can be used as an illustration of how each axiom
influence the properties, and what happens when we relax
the rules.

I We can naturally associate a tensor to an algebra; also
vice-versa, if we omit multiplicative associativity!

I Natural notions like tensor rank can tell us something
about the algebra; multiplicative complexity.

I However, these notions can be incredibly difficult to work
with!



Algebras and Linear Maps

Let A denote an F -algebra of dimension n. Then “Multiplication
on the left by y ” defines a map on A:

x 7→ y ◦ x =: Ly (x)

Then for x , z ∈ A, λ ∈ F ,

Ly (x + λz) = Ly (x) + λLy (z)
Ly+λz(x) = Ly (x) + λLz(x).

I Each Ly is an F -linear map on A, and so can be identified
with an element of Mn(F ).

I The set C(A) = {Ly : y ∈ A} is an n-dimensional subspace
of Mn(F ).



Algebras and Linear Maps

The set C(A) = {Ly : y ∈ A} is an n-dimensional sub-
space of Mn(F ).

C(C) =
{[

a −b
b a

]
: a,b ∈ R

}

C(H) =




a −b −c d
b a −d c
c d a −b
d −c b a

 : a,b, c,d ∈ R


C(M2(F )) =




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 : a,b, c,d ∈ R





Algebras and Linear Maps

The set C(A) = {Ly : y ∈ A} is an n-dimensional sub-
space of Mn(F ).

I If A is associative, then C(A) is a sub-algebra of Mn(F ).
I If A is a division algebra, then every nonzero element of

C(A) is invertible.

Non-associative division algebras (semifields) corre-
spond precisely to n-dimensional subspace of Mn(F )
where every nonzero element is invertible.



Algebras and Tensors

By choosing a basis for C(A), we can represent the algebra A
as a tensor T (A).

T (C) =
[[

1 0
0 1

]
,
[

0 −1
1 0

]]
T (H) =

[[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
,

[0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
,

[0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
,

[0 0 0 1
0 0 −1 0
0 1 0 0
1 0 0 0

]]

T (M2(F )) =

[[1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
,

[0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

]
,

[0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

]
,

[0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]]



Algebras and Tensor Rank

We can decompose the tensor T (C) into the sum of three
rank-one tensors.

T (C) =
[[

1 0
0 1

]
,
[

0 −1
1 0

]]
= 1

2

[[
1 1
1 1

]
,
[

1 1
1 1

]]
+ 1

2

[[
1 −1
−1 1

]
,
[−1 1

1 −1

]]
+ 2
[[

0 0
0 0

]
,
[

0 −1
0 0

]]
Does this tell us anything useful?



Algebras and Tensor Rank

In order to calculate the product

(a + bi)(c + di) = (ac − bd) + (ad + bc)i ,

naively it takes four real multiplications.

However, we can achieve this using fewer multiplications
(although more additions) of the unknowns:

ac − bd = ((a + b)(c + d) + (a− b)(c − d))/2− 2bc
ad + bc = ((a + b)(c + d)− (a− b)(c − d))/2

The tensor rank of an algebra measures the complexity of
multiplication in the nonscalar model.



Algebras and Tensor Rank

The tensor rank of an algebra measures the complexity of
multiplication in the nonscalar model.

Similarly, multiplying 2× 2 matrices naively takes 8
multiplications.

However, Strassen’s famous algorithm shows that it can be
done in 7 multiplications (and 7 are necessary): the tensor rank
of T (M2(F )) is 7.

This is very important for efficient computation of larger
matrices. The tensor rank is not known even for 3× 3 matrices;
all we know is that it is at least 19 and at most 23.



Algebras and Tensor Rank

Over finite fields, multiplication in field extensions plays an
important role in many applications.

In this setting the problem has interesting connections to coding
theory and algebraic geometry.

In a recent paper (Lavrauw-JS), it was shown that there exist
non-associative division algebras (semifields) with lower tensor
rank than the field of the same order.



What is a determinant?

Students are (in some universities) first introduced to
determinants when attempting to calculate the inverse of a
matrix.

They learn algorithms for calculating larger determinants, learn
that a non-zero determinant implies invertibility, and that the
determinant of a product is the product of the determinants.

[One visual way of explaining determinants is as the
area/volume of the image of a unit square/cube after multiplying
by the given matrix - GeoGebra]

However, a proof of the product rule is often deemed too
complicated, perhaps proven only in the 2× 2 case.



Alternating Multilinear Forms

Students will often encounter the notion of a symmetric, or
skew-symmetric/antisymmetric/alternating bilinear form, and
how they correspond to symmetric and skew-symmetric
matrices respectively.

They may encounter exterior/wedge products in
physics-motivated settings.

However a straightforward description of the determinant and
its important properties can be achieved without too much
complicated setup.



Alternating Multilinear Forms

I A multilinear form is alternating if it is zero whenever any
two inputs are equal.

I The space of alternating form on V n is one-dimensional;
choose D as one such (nonzero) form.

I The form DT (v1, . . . , vn) := D(T (v1), . . . ,T (vn)) is
alternating; thus there exists a unique d(T ) ∈ F such that
DT = d(T )D.

I Then DST = d(ST )D. It is also straightforward to see that
DST = d(S)d(T )D. Thus d is multiplicative.

I It is reasonably straightforward to see that d(T ) = 0 if and
only if T is not invertible.

d(T ) =
∑
σ∈Sn

sign(σ)
n∏

i=1

Tiσ(i)



Tensors and Quantum Information

Classically, an object with two possible states (on/off, up/down
etc) is represented by a 0 or 1, and a system of n such objects
is represented by a string in {0,1}n.

In the quantum world, objects can be in a superposition of
states. An observation returns one of the classical states with
some probability.

We represent a quantum state by a vector α0e0 + α1e1 ∈ F 2. A
measurement will return the vector ei with probability |αi |.

A quantum system of n objects is represented by a vector in the
tensor power (F 2)⊗n. Classical states correspond to standard
basis vectors ei1 ⊗ ei2 ⊗ · · · ⊗ ein ↔ (i1, i2, . . . , in).



Tensors and Quantum Information

Quantum computations are then modelled by the application of
a certain restricted class of linear maps; called feasible.

Often these are maps that act as the identity in some factors of
the tensor product, and a unitary matrix acting on others.

The standard example is that of a Hadamard matrix

H =
1√
2

[
1 1
1 −1

]
,

or products of the form H ⊗ I2,H ⊗ H etc.



Deutsch-Josza Algorithm

Suppose we have a binary function f from {0,1}n to {0,1}, and
we are told that it is either constant, or balanced.

Classically, we would need to evaluate f at 2n/2 values in order
to determine which of these properties it has.

Instead we create a superposition of all states, run it through a
single iteration of a feasible operation, and then measure the
output.

∑
Ti1i2...,in(ei1 ⊗ ei2 ⊗ · · · ⊗ ein) 7→ ei1 ⊗ ei2 ⊗ · · · ⊗ ein

with probability |Ti1i2...,in |



Deutsch-Josza Algorithm

The key is to find a feasible operation such that the possible
outputs of the measurement for a constant function are disjoint
from those of a balanced function.

That is, the positions with nonzero coefficients in the resulting
arrays are disjoint. Given the operation, calculating the
coefficients is elementary linear algebra.

So the quantum algorithm can distinguish between constant
and balanced in just one operation!



Tensors and Post-Quantum Cryptography

Quantum algorithms can break cryptosystems based on
problems assumed difficult for classical computers, e.g.
factorisation, elliptic curves.

Linear algebra over finite fields has recently become relevant to
Post-Quantum Cryptography, via rank-metric codes.

Tensors may well play a role in constructing quantum-proof
cryptosystems.

Tensors: Part of the solution, as well as part of the
problem!



Thank you for your attention!


